25 research outputs found

    Studying Gender in Conference Talks -- data from the 223rd meeting of the American Astronomical Society

    Full text link
    We present a study on the gender balance, in speakers and attendees, at the recent major astronomical conference, the American Astronomical Society meeting 223, in Washington, DC. We conducted an informal survey, yielding over 300 responses by volunteers at the meeting. Each response included gender data about a single talk given at the meeting, recording the gender of the speaker and all question-askers. In total, 225 individual AAS talks were sampled. We analyze basic statistical properties of this sample. We find that the gender ratio of the speakers closely matched the gender ratio of the conference attendees. The audience asked an average of 2.8 questions per talk. Talks given by women had a slightly higher number of questions asked (3.2±\pm0.2) than talks given by men (2.6±\pm0.1). The most significant result from this study is that while the gender ratio of speakers very closely mirrors that of conference attendees, women are under-represented in the question-asker category. We interpret this to be an age-effect, as senior scientists may be more likely to ask questions, and are more commonly men. A strong dependence on the gender of session chairs is found, whereby women ask disproportionately fewer questions in sessions chaired by men. While our results point to laudable progress in gender-balanced speaker selection, we believe future surveys of this kind would help ensure that collaboration at such meetings is as inclusive as possible.Comment: 4 pages, 5 figures. Comments welcome

    Velocity-dependent annihilation radiation from dark matter subhalos in cosmological simulations

    Get PDF
    We use the suite of Milky Way-like galaxies in the Auriga simulations to determine the contribution to annihilation radiation from dark matter subhalos in three velocity-dependent dark matter annihilation models: Sommerfeld, p-wave, and d-wave models. We compare these to the corresponding distribution in the velocity-independent s-wave annihilation model. For both the hydrodynamical and dark-matter-only simulations, only in the case of the Sommerfeld-enhanced annihilation does the total annihilation flux from subhalos exceed the total annihilation flux from the smooth halo component within the virial radius of the halo. Progressing from Sommerfeld to the s, p, and d-wave models, the contribution from the smooth component of the halo becomes more dominant, implying that for the p-wave and d-wave models the smooth component is by far the dominant contribution to the radiation. Comparing to the Galactic center excess observed by Fermi-LAT, for all simulated halos the emission is dominated by the smooth halo contribution. However, it is possible that for Sommerfeld models, extrapolation down to mass scales below the current resolution limit of the simulation would imply a non-negligible contribution to the gamma-ray emission from the Galactic Center region

    Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere

    Get PDF
    For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high-resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movements and offer a promising opportunity for integrating independent data sources to describe avian migration. Here, we present a three-stage modeling framework for estimating spatial patterns of avian migration. First, we integrate tracking and band re-encounter data to quantify migratory connectivity, defined as the relative proportions of individuals migrating between breeding and nonbreeding regions. Next, we use estimated connectivity proportions along with eBird occurrence probabilities to produce probabilistic least-cost path (LCP) indices. In a final step, we use generalized additive mixed models (GAMMs) both to evaluate the ability of LCP indices to accurately predict (i.e., as a covariate) observed locations derived from tracking and band re-encounter data sets versus pseudo-absence locations during migratory periods and to create a fully integrated (i.e., eBird occurrence, LCP, and tracking/band re-encounter data) spatial prediction index for mapping species-specific seasonal migrations. To illustrate this approach, we apply this framework to describe seasonal migrations of 12 bird species across the Western Hemisphere during pre- and postbreeding migratory periods (i.e., spring and fall, respectively). We found that including LCP indices with eBird occurrence in GAMMs generally improved the ability to accurately predict observed migratory locations compared to models with eBird occurrence alone. Using three performance metrics, the eBird + LCP model demonstrated equivalent or superior fit relative to the eBird-only model for 22 of 24 species–season GAMMs. In particular, the integrated index filled in spatial gaps for species with over-water movements and those that migrated over land where there were few eBird sightings and, thus, low predictive ability of eBird occurrence probabilities (e.g., Amazonian rainforest in South America). This methodology of combining individual-based seasonal movement data with temporally dynamic species distribution models provides a comprehensive approach to integrating multiple data types to describe broad-scale spatial patterns of animal movement. Further development and customization of this approach will continue to advance knowledge about the full annual cycle and conservation of migratory birds

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Integrating climate-change refugia into 30 by 30 conservation planning in North America

    No full text
    Countries have set targets for conserving natural areas to mitigate biodiversity loss, such as the protection of 30% of lands by 2030, commonly referred to as “30 by 30”. Yet strategic conservation planning to align those targets with climate-change refugia is lacking. We investigated the feasibility of achieving 30 by 30 in North America by assessing the proportions of state/provincial/territorial land projected to provide refugia for terrestrial biodiversity and the proportions of those refugia that are currently protected. We also conducted a reserve selection prioritization to identify priority areas that complement the current protected area network and capture refugia for seven taxonomic groups. In North America, <15% of refugia are protected, but ample opportunity exists to expand protection if warming is limited to 2°C. Beyond 2°C, however, the majority of refugia will occur only at high latitudes and elevations. Incorporation of refugia into 30 by 30 efforts will facilitate species persistence under climate change

    Velocity-dependent J-factors for annihilation radiation from cosmological simulations

    Get PDF
    We determine the dark matter pair-wise relative velocity distribution in a set of Milky Way-like halos in the Auriga and APOSTLE simulations. Focusing on the smooth halo component, the relative velocity distribution is well-described by a Maxwell-Boltzmann distribution over nearly all radii in the halo. We explore the implications for velocity-dependent dark matter annihilation, focusing on four models which scale as different powers of the relative velocity: Sommerfeld, s-wave, p-wave, and d-wave models. We show that the J -factors scale as the moments of the relative velocity distribution, and that the halo-to-halo scatter is largest for d-wave, and smallest for Sommerfeld models. The J -factor is strongly correlated with the dark matter density in the halo, and is very weakly correlated with the velocity dispersion. This implies that if the dark matter density in the Milky Way can be robustly determined, one can accurately predict the dark matter annihilation signal, without the need to identify the dark matter velocity distribution in the Galaxy
    corecore