129 research outputs found

    A best practice fall prevention exercise program to improve balance, strength / power, and psychosocial health in older adults: study protocol for a randomized controlled trial

    Full text link

    The Effects of Trunk Muscle Training on Physical Fitness and Sport-Specific Performance in Young and Adult Athletes: A Systematic Review and Meta-Analysis.

    Get PDF
    Background The role of trunk muscle training (TMT) for physical ftness (e.g., muscle power) and sport-specifc performance measures (e.g., swimming time) in athletic populations has been extensively examined over the last decades. However, a recent systematic review and meta-analysis on the efects of TMT on measures of physical ftness and sport-specifc performance in young and adult athletes is lacking. Objective To aggregate the efects of TMT on measures of physical ftness and sport-specifc performance in young and adult athletes and identify potential subject-related moderator variables (e.g., age, sex, expertise level) and training-related programming parameters (e.g., frequency, study length, session duration, and number of training sessions) for TMT efects. Data Sources A systematic literature search was conducted with PubMed, Web of Science, and SPORTDiscus, with no date restrictions, up to June 2021. Study Eligibility Criteria Only controlled trials with baseline and follow-up measures were included if they examined the efects of TMT on at least one measure of physical ftness (e.g., maximal muscle strength, change-of-direction speed (CODS)/ agility, linear sprint speed) and sport-specifc performance (e.g., throwing velocity, swimming time) in young or adult competitive athletes at a regional, national, or international level. The expertise level was classifed as either elite (competing at national and/or international level) or regional (i.e., recreational and sub-elite). Study Appraisal and Synthesis Methods The methodological quality of TMT studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. A random-efects model was used to calculate weighted standardized mean diferences (SMDs) between intervention and active control groups. Additionally, univariate sub-group analyses were independently computed for subject-related moderator variables and training-related programming parameters. Results Overall, 31 studies with 693 participants aged 11–37 years were eligible for inclusion. The methodological quality of the included studies was 5 on the PEDro scale. In terms of physical ftness, there were signifcant, small-to-large efects of TMT on maximal muscle strength (SMD =0.39), local muscular endurance (SMD =1.29), lower limb muscle power (SMD=0.30), linear sprint speed (SMD =0.66), and CODS/agility (SMD =0.70). Furthermore, a signifcant and moderate TMT efect was found for sport-specifc performance (SMD=0.64). Univariate sub-group analyses for subject-related moderator variables revealed signifcant efects of age on CODS/agility (p=0.04), with signifcantly large efects for children (SMD=1.53, p=0.002). Further, there was a signifcant efect of number of training sessions on muscle power and linear sprint speed (p≤0.03), with signifcant, small-to-large efects of TMT for>18 sessions compared to≤18 sessions (0.45≤SMD≤0.84, p≤0.003). Additionally, session duration signifcantly modulated TMT efects on linear sprint speed, CODS/agility, and sport-specifc performance (p≤0.05). TMT with session durations≤30 min resulted in signifcant, large efects on linear sprint speed and CODS/agility (1.66≤SMD≤2.42, p≤0.002), whereas session durations>30 min resulted in signifcant, large efects on sport-specifc performance (SMD=1.22, p=0.008). Conclusions Our fndings indicate that TMT is an efective means to improve selected measures of physical ftness and sportspecifc performance in young and adult athletes. Independent sub-group analyses suggest that TMT has the potential to improve CODS/agility, but only in children. Additionally, more (>18) and/or shorter duration (≤30 min) TMT sessions appear to be more efective for improving lower limb muscle power, linear sprint speed, and CODS/agility in young or adult competitive athletes.publishedVersio

    Cognitive-postural multitasking training in older adults: Effects of input-output modality mappings on cognitive performance and postural control

    Get PDF
    Older adults exhibit impaired cognitive and balance performance, particularly under multi-task conditions, which can be improved through training. Compatibility of modality mappings in cognitive tasks (i.e., match between stimulus modality and anticipated sensory effects of motor responses), modulates physical and cognitive dual-task costs. However, the effects of modality specific training programs have not been evaluated yet. Here, we tested the effects of cognitive-postural multi-tasking training on the ability to coordinate task mappings under high postural demands in healthy older adults. Twenty-one adults aged 65-85 years were assigned to one of two groups. While group 1 performed cognitive-postural triple-task training with compatible modality mappings (i.e., visual-manual and auditory-vocal dual n-back tasks), group 2 performed the same tasks with incompatible modality mappings (i.e., visual-vocal and auditory-manual n-back tasks). Throughout the 6-weeks balance training intervention, working-memory load was gradually increased while base-of-support was reduced. Before training (T0), after a 6-week passive control period (T1), and immediately after the intervention (T2), participants performed spatial dual one-back tasks in semi-tandem stance position. Our results indicate improved working-memory performance and reduced dual-task costs for both groups after the passive control period, but no training-specific performance gains. Furthermore, balance performance did not improve in response to training. Notably, the cohort demonstrated meaningful interindividual variability in training responses. Our findings raise questions about practice effects and age-related heterogeneity of training responses following cognitive-motor training. Following multi-modal balance training, neither compatible nor incompatible modality mappings had an impact on the observed outcomes

    Are early or late maturers likely to be fitter in the general population?

    Get PDF
    © 2021 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/ijerph18020497The present study aims to identify the optimal body-size/shape and maturity characteristics associated with superior fitness test performances having controlled for body-size, sex, and chronological-age differences. The sample consisted of 597 Tunisian children (396 boys and 201 girls) aged 8 to 15 years. Three sprint speeds recorded at 10, 20 and 30 m; two vertical and two horizontal jump tests; a change-of-direction and a handgrip-strength tests, were assessed during physical-education classes. Allometric modelling was used to identify the benefit of being an early or late maturer. Findings showed that being tall and light is the ideal shape to be successful at most physical fitness tests, but the height-to-weight “shape” ratio seems to be test-dependent. Having controlled for body-size/shape, sex, and chronological age, the model identified maturity-offset as an additional predictor. Boys who go earlier/younger through peak-height-velocity (PHV) outperform those who go at a later/older age. However, most of the girls’ physical-fitness tests peaked at the age at PHV and decline thereafter. Girls whose age at PHV was near the middle of the age range would appear to have an advantage compared to early or late maturers. These findings have important implications for talent scouts and coaches wishing to recruit children into their sports/athletic clubs.Published versio

    The effects of aerobic exercise and transcranial direct current stimulation on cognitive function in older adults with and without cognitive impairment:A systematic review and meta-analysis

    Get PDF
    Background: Aerobic exercise (AE) may slow age-related cognitive decline. However, such cognition-sparing effects are not uniform across cognitive domains and studies. Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation and is also emerging as a potential alternative to pharmaceutical therapies. Like AE, the effectiveness of tDCS is also inconsistent for reducing cognitive impairment in ageing. The unexplored possibility exists that pairing AE and tDCS could produce synergistic effects and reciprocally augment cognition-improving effects in older individuals with and without cognitive impairments.Previous research found such synergistic effects on cognition when cognitive training is paired with tDCS in older individuals with and without mild cognitive impairment (MCI) or dementia.Aim: The purpose of this systematic review with meta-analysis was to explore if pairing AE with tDCS could augment singular effects of AE and tDCS on global cognition (GC), working memory (WM) and executive function (EF) in older individuals with or without MCI and dementia.Methods: Using a PRISMA-based systematic review, we compiled studies that examined the effects of AE alone, tDCS alone, and AE and tDCS combined on cognitive function in older individuals with and without mild cognitive impairment (MCI) or dementia. Using a PICOS approach, we systematically searched PubMed, Scopus and Web of Science searches up to December 2021, we focused on ‘MoCA’, ‘MMSE’, ‘Mini-Cog’ (measures) and ‘cognition’, ‘cognitive function’, ‘cognitive’, ‘cognitive performance’, ‘executive function’, ‘executive process’, ‘attention’, ‘memory’, ‘memory performance’ (outcome terms). We included only randomized controlled trials (RTC) in humans if available in English full text over the past 20 years, with participants’ age over 60. We assessed the methodological quality of the included studies (RTC) by the Physiotherapy Evidence Database (PEDro) scale.Results: Overall, 68 studies were included in the meta-analyses. AE (ES = 0.56 [95% CI: 0.28–0.83], p = 0.01) and tDCS (ES = 0.69 [95% CI: 0.12–1.26], p = 0.02) improved GC in all three groups of older adults combined (healthy, MCI, demented). In healthy population, AE improved GC (ES = 0.46 [95% CI: 0.22–0.69], p = 0.01) and EF (ES = 0.27 [95% CI: 0.05–0.49], p = 0.02). AE improved GC in older adults with MCI (ES = 0.76 [95% CI: 0.21–1.32], p = 0.01). tDCS improved GC (ES = 0.69 [90% CI: 0.12–1.26], p = 0.02), all three cognitive function (GC, WM and EF) combined in older adults with dementia (ES = 1.12 [95% CI: 0.04–2.19], p = 0.04) and improved cognitive function in older adults overall (ES = 0.69 [95% CI: 0.20–1,18], p = 0.01).Conclusion: Our systematic review with meta-analysis provided evidence that beyond the cardiovascular and fitness benefits of AE, pairing AE with tDCS may have the potential to slow symptom progression of cognitive decline in MCI and dementia. Future studies will examine the hypothesis of this present review that a potentiating effect would incrementally improve cognition with increasing severity of cognitive impairment.</p

    The effects of aerobic exercise and transcranial direct current stimulation on cognitive function in older adults with and without cognitive impairment:A systematic review and meta-analysis

    Get PDF
    Background: Aerobic exercise (AE) may slow age-related cognitive decline. However, such cognition-sparing effects are not uniform across cognitive domains and studies. Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation and is also emerging as a potential alternative to pharmaceutical therapies. Like AE, the effectiveness of tDCS is also inconsistent for reducing cognitive impairment in ageing. The unexplored possibility exists that pairing AE and tDCS could produce synergistic effects and reciprocally augment cognition-improving effects in older individuals with and without cognitive impairments. Previous research found such synergistic effects on cognition when cognitive training is paired with tDCS in older individuals with and without mild cognitive impairment (MCI) or dementia. Aim: The purpose of this systematic review with meta-analysis was to explore if pairing AE with tDCS could augment singular effects of AE and tDCS on global cognition (GC), working memory (WM) and executive function (EF) in older individuals with or without MCI and dementia. Methods: Using a PRISMA-based systematic review, we compiled studies that examined the effects of AE alone, tDCS alone, and AE and tDCS combined on cognitive function in older individuals with and without mild cognitive impairment (MCI) or dementia. Using a PICOS approach, we systematically searched PubMed, Scopus and Web of Science searches up to December 2021, we focused on ‘MoCA’, ‘MMSE’, ‘Mini-Cog’ (measures) and ‘cognition’, ‘cognitive function’, ‘cognitive’, ‘cognitive performance’, ‘executive function’, ‘executive process’, ‘attention’, ‘memory’, ‘memory performance’ (outcome terms). We included only randomized controlled trials (RTC) in humans if available in English full text over the past 20 years, with participants’ age over 60. We assessed the methodological quality of the included studies (RTC) by the Physiotherapy Evidence Database (PEDro) scale. Results: Overall, 68 studies were included in the meta-analyses. AE (ES = 0.56 [95% CI: 0.28–0.83], p = 0.01) and tDCS (ES = 0.69 [95% CI: 0.12–1.26], p = 0.02) improved GC in all three groups of older adults combined (healthy, MCI, demented). In healthy population, AE improved GC (ES = 0.46 [95% CI: 0.22–0.69], p = 0.01) and EF (ES = 0.27 [95% CI: 0.05–0.49], p = 0.02). AE improved GC in older adults with MCI (ES = 0.76 [95% CI: 0.21–1.32], p = 0.01). tDCS improved GC (ES = 0.69 [90% CI: 0.12–1.26], p = 0.02), all three cognitive function (GC, WM and EF) combined in older adults with dementia (ES = 1.12 [95% CI: 0.04–2.19], p = 0.04) and improved cognitive function in older adults overall (ES = 0.69 [95% CI: 0.20–1,18], p = 0.01). Conclusion: Our systematic review with meta-analysis provided evidence that beyond the cardiovascular and fitness benefits of AE, pairing AE with tDCS may have the potential to slow symptom progression of cognitive decline in MCI and dementia. Future studies will examine the hypothesis of this present review that a potentiating effect would incrementally improve cognition with increasing severity of cognitive impairment

    Socio-cultural determinants of adiposity and physical activity in preschool children: A cross-sectional study

    Get PDF
    BACKGROUND: Both individual socio-cultural determinants such as selected parental characteristics (migrant background, low educational level and workload) as well as the regional environment are related to childhood overweight and physical activity (PA). The purpose of the study was to compare the impact of distinct socio-cultural determinants such as the regional environment and selected parental characteristics on adiposity, PA and motor skills in preschool children. METHODS: Forty preschools (N = 542 children) of two culturally different urban regions (German and French speaking part of Switzerland) participated in the study (Ballabeina Study). Outcome measures included adiposity (BMI and skinfold thickness), objectively measured sedentary activities and PA (accelerometers) and agility performance (obstacle course). Parental characteristics (migrant status, educational level and workload) were assessed by questionnaire. RESULTS: Children from the French speaking areas had higher adiposity, lower levels of total and of more intense PA, were more sedentary and less agile than children from the German speaking regions (percent differences for all outcome parameters except for BMI ≥10%; all p ≤ 0.04). Differences in skinfold thickness, sedentary activities and agility, but not in PA, were also found between children of Swiss and migrant parents, though they were ≤8% (p ≤ 0.02). While paternal workload had no effect, maternal workload and parental education resulted in differences in some PA measures and/or agility performance (percent differences in both: ≤9%, p ≤ 0.008), but not in adiposity or sedentary activities (p = NS). Regional differences in skinfold thickness, PA, sedentary activities and agility performance persisted after adjustment for parental socio-cultural characteristics, parental BMI and, where applicable, children's skinfolds (all p ≤ 0.01). CONCLUSIONS: The regional environment, especially the broader social environment, plays a prominent role in determining adiposity, PA and motor skills of young children and should be implicated in the prevention of obesity and promotion of PA in children

    Age-related decrements in dual-task performance: comparison of different mobility and cognitive tasks. A cross sectional study

    Get PDF
    This cross-sectional study investigated the age-related differences in dual-task performance both in mobility and cognitive tasks and the additive dual-task costs in a sample of older, middle-aged and young adults. 74 older adults (M = 72.63±5.57 years), 58 middle-aged adults (M = 46.69±4.68 years) and 63 young adults (M = 25.34±3.00 years) participated in the study. Participants performed different mobility and subtraction tasks under both single- and dual-task conditions. Linear regressions, repeated-measures and one-way analyses of covariance were used, The results showed: significant effects of the age on the dual and mobility tasks (p<0.05) and differences among the age-groups in the combined dual-task costs (p<0.05); significant decreases in mobility performance under dual-task conditions in all groups (p<0.05) and a decrease in cognitive performance in the older group (p<0.05). Dual-task activity affected mobility and cognitive performance, especially in older adults who showed a higher dual-task cost, suggesting that dual-tasks activities are affected by the age and consequently also mobility and cognitive tasks are negatively influenced
    corecore