56 research outputs found

    Charge Fluctuations in the Edge States of N-S hybrid Nano-Structures

    Full text link
    In this work we show how to calculate the equilibrium and non-equilibrium charge fluctuations in a gated normal mesoscopic conductor which is attached to one normal lead and one superconducting lead. We then consider an example where the structure is placed in a high magnetic field, such that the transport is dominated by edge states. We calculate the equilibrium and non-equilibrium charge fluctuations in the gate, for a single edge state, comparing our results to those for the same system, but with two normal leads. We then consider the specific example of a quantum point contact and calculate the charge fluctuations in the gate for more than one edge state.Comment: 4 pages with 1 figure. In published version the high magnetic field dynamics of the holes is treated incorrectly. An erratum is in preparatio

    Local densities, distribution functions, and wave function correlations for spatially resolved shot noise at nanocontacts

    Full text link
    We consider a current-carrying, phase-coherent multi-probe conductor to which a small tunneling contact is attached. We treat the conductor and the tunneling contact as a phase-coherent entity and use a Green's function formulation of the scattering approach. We show that the average current and the current fluctuations at the tunneling contact are determined by an effective local non-equilibrium distribution function. This function characterizes the distribution of charge-carriers (or quasi-particles) inside the conductor. It is an exact quantum-mechanical expression and contains the phase-coherence of the particles via local partial densities of states, called injectivities. The distribution function is analyzed for different systems in the zero-temperature limit as well as at finite temperature. Furthermore, we investigate in detail the correlations of the currents measured at two different contacts of a four-probe sample, where two of the probes are only weakly coupled contacts. In particular, we show that the correlations of the currents are at zero-temperature given by spatially non-diagonal injectivities and emissivities. These non-diagonal densities are sensitive to correlations of wave functions and the phase of the wave functions. We consider ballistic conductors and metallic diffusive conductors. We also analyze the Aharonov-Bohm oscillations in the shot noise correlations of a conductor which in the absence of the nano-contacts exhibits no flux-sensitivity in the conductance.Comment: 17 pages, 8 figure

    Quantum shot-noise at local tunneling contacts on mesoscopic multiprobe conductors

    Full text link
    New experiments that measure the low-frequency shot-noise spectrum at local tunneling contacts on mesoscopic structures are proposed. The current fluctuation spectrum at a single tunneling tip is determined by local partial densities of states. The current-correlation spectrum between two tunneling tips is sensitive to non-diagonal density of states elements which are expressed in terms of products of scattering states of the conductor. Thus such an experiment permits to investigate correlations of electronic wave functions. We present specific results for a clean wire with a single barrier and for metallic diffusive conductors.Comment: 4 pages REVTeX, 2 figure

    Charge fluctuations in a quantum point contact attached to a superconducting lead

    Get PDF
    We show how to calculate the charge noise spectrum in a normal mesoscopic conductor, which is capacitively coupled to a macroscopic gate, when this conductor is attached to L normal leads and M superconducting leads, the only restriction being that the superconducting leads must be at the same chemical potential. We then proceed to examine results for a quantum point contact (QPC) in a normal lead connecting to a superconductor. Of interest is the fluctuating current in a gate capacitively coupled to a QPC. The results are compared with the case when all leads are normal. We find a doubling of the equilibrium charge fluctuations and a large enhancement (>2) in the current noise spectrum to first order in |eV|, when a channel in the QPC is opening.Comment: 4 pages, 3 figure

    Lifetime of metastable states in resonant tunneling structures

    Full text link
    We investigate the transport of electrons through a double-barrier resonant-tunneling structure in the regime where the current-voltage characteristics exhibit bistability. In this regime one of the states is metastable, and the system eventually switches from it to the stable state. We show that the mean switching time grows exponentially as the voltage across the device is tuned from the its boundary value into the bistable region. In samples of small area we find that the logarithm of the lifetime is proportional to the voltage (measured from its boundary value) to the 3/2 power, while in larger samples the logarithm of the lifetime is linearly proportional to the voltage.Comment: REVTeX 4, 5 pages, 3 EPS-figure

    Nonlinear voltage dependence of shot noise

    Get PDF
    The current noise in a multi-probe mesoscopic conductor can have a nonlinear dependence on the strength of driving bias voltage. This paper presents a theoretical formulation for the nonlinear noise spectra. We pay special attention to maintain gauge invariance at the nonlinear level. At small but finite voltages, explicit expressions for nonlinear noise spectra, expanded order by order in the bias, have been derived. In the wideband limit, a closed form solution of the noise spectra for finite voltages is obtained

    Coulomb induced positive current-current correlations in normal conductors

    Get PDF
    In the white-noise limit current correlations measured at different contacts of a mesoscopic conductor are negative due to the antisymmetry of the wave function (Pauli principle). We show that current fluctuations at capacitive contacts induced via the long range Coulomb interaction as consequence of charge fluctuations in the mesoscopic sample can be {\it positively} correlated. The positive correlations are a consequence of the extension of the wave-functions into areas near both contacts. As an example we investigate in detail a quantum point contact in a high magnetic field under conditions in which transport is along an edge state.Comment: Revtex, 4 pages includes 2 figure

    Charge densities and charge noise in mesoscopic conductors

    Full text link
    We introduce a hierarchy of density of states to characterize the charge distribution in a mesoscopic conductor. At the bottom of this hierarchy are the partial density of states which represent the contribution to the local density of states if both the incident and the out-going scattering channel is prescribed. The partial density of states play a prominent role in measurements with a scanning tunneling microscope on multiprobe conductors in the presence of current flow. The partial density of states determine the degree of dephasing generated by a weakly coupled voltage probe. In addition the partial density of states determine the frequency-dependent response of mesoscopic conductors in the presence of slowly oscillating voltages applied to the contacts of the sample. The partial density of states permit the formulation of a Friedel sum rule which can be applied locally. We introduce the off-diagonal elements of the partial density of states matrix to describe charge fluctuation processes. This generalization leads to a local Wigner-Smith life-time matrix.Comment: 10 pages, 2 figure

    Small denominators, frequency operators, and Lie transforms for nearly integrable quantum spin systems

    Get PDF
    Based on the previously proposed notions of action operators and of quantum integrability, frequency operators are introduced in a fully quantum-mechanical setting. They are conceptually useful because another formulation can be given to unitary perturbation theory. When worked out for quantum spin systems, this variant is found to be formally equivalent to canonical perturbation theory applied to nearly integrable systems consisting of classical spins. In particular, it becomes possible to locate the quantum-mechanical operator-valued equivalent of the frequency denominators that may cause divergence of the classical perturbation series. The results that are established here link the concept of quantum-mechanical integrability to a technical question, namely, the behavior of specific perturbation series

    Enhancement of the Two-channel Kondo Effect in Single-Electron boxes

    Full text link
    The charging of a quantum box, coupled to a lead by tunneling through a single resonant level, is studied near the degeneracy points of the Coulomb blockade. Combining Wilson's numerical renormalization-group method with perturbative scaling approaches, the corresponding low-energy Hamiltonian is solved for arbitrary temperatures, gate voltages, tunneling rates, and energies of the impurity level. Similar to the case of a weak tunnel barrier, the shape of the charge step is governed at low temperatures by the non-Fermi-liquid fixed point of the two-channel Kondo effect. However, the associated Kondo temperature TK is strongly modified. Most notably, TK is proportional to the width of the level if the transmission through the impurity is close to unity at the Fermi energy, and is no longer exponentially small in one over the tunneling matrix element. Focusing on a particle-hole symmetric level, the two-channel Kondo effect is found to be robust against the inclusion of an on-site repulsion on the level. For a large on-site repulsion and a large asymmetry in the tunneling rates to box and to the lead, there is a sequence of Kondo effects: first the local magnetic moment that forms on the level undergoes single-channel screening, followed by two-channel overscreening of the charge fluctuations inside the box.Comment: 21 pages, 19 figure
    corecore