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Nonlinear voltage dependence of shot noise
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The electron shot noise in a multiprobe mesoscopic conductor can have a nonlinear dependence on the
strength of driving bias voltage. This paper presents a theoretical formulation for the nonlinear noise spectra.
We pay special attention to maintain gauge invariance at the nonlinear level. At small but finite voltages,
explicit expressions for nonlinear noise spectra, expanded order by order in the bias, have been derived. In the
wideband limit, a closed-form solution of the noise spectra for finite voltages is obtained.
[S0163-182699)01548-9

[. INTRODUCTION =1(Vpia9- A notable example is the resonance tunneling
structure where curremtvaries with bias in a nonlinear fash-
Electric shot noise of mesoscopic systems has been stutbn giving rise to NDR. Previous investigatidiig®*>**have
ied extensively because the spectra of it contains informa-already indicated that the nonlinda¥ characteristics have a
tion that characterizes transport of the conductor. Shot noisgrofound influence on the shot-noise spectra including the
has been used to probe the kinetics of elecfr@msl to in- enhancement of it.
vestigate correlations of electronic wave functiéms.clas- The purpose of the present work is to report a microscopic
sical conductor is characterized by Poissonian nbigaere  theory for calculating shot noise at the nonlinear regime in
the current fluctuatiod(A1)?) in a frequency rangd v is ~ mesoscopic conductors. Our theory is based on nonequilib-
proportional to electrical current ((Al)?)=2qlAv, where rium Green’s functions where the electron-electron interac-
qis the electron charge. On the other hand, for a mesoscoption is treated in a self-consistent manner at the Hartree level.
conductor shot noise is influenced by two other factors: thé direct consequence of self-consistency is that shot noise
Pauli exclusion principle and the Coulomb interaction. Paulibecomes only a function of voltage difference, which is the
exclusion reduces Poissonian noise by a factor proportiondequired physical conditiofgauge invariangefor a nonlin-
to (1—T) for each transmission subbafdwhereT is the  ear theory. We derive the nonlinear shot-noise formula at
transmission coefficient of the subband. Coulomb interactioero temperature, which, in the wideband limit, can be ex-
can contribute to reduce or enhance shot noise depending @étly evaluated. For more general situations beyond the
system details. The Pauli suppression of shot noise has be#fdeband limit, we derive shot-noise spectra order by order
convincingly demonstrated by several experiméft?4 in bias voltage.
The universal Coulomb suppression of short noise in nonde- In Sec. Il we present the derivation of the nonlinear shot-
generate diffusive conductors has been observed in comput8pise spectra. Sections Ill and IV present the wideband limit
simulations® and confirmed theoretically using Boltzmann- result with numerical evaluations, as well as the weakly non-
Langevin equation? The quantum enhancement of shot linear analysis of the shot noise. Section V summarizes the
noise from the classical value due to Coulomb interactiormain findings of this work.
has recently been explored experiment&thy For a tunnel-
ing structure with or without a magnetic field, shot noise
versus voltage increases drastically in the region of negative
differential resistancéNDR). If one assumes sequential tun-  Several theoretical approachs have been applied to study
neling of the electron transpart,numerical resultS were in  shot noise including the scattering matrix thedsemiclas-
good agreement with those of experiment, indicating the ensical kinetic theory>?® and the nonequilibrium Green’s-
hancement of shot noise was indeed caused by Coulomfanction (NEGP theory?>?2For a full nonlinear analysis of
interaction. The effects of Coulomb interaction has also beeguantum transport in the mesoscopic regime, it is most con-
studied from the point of view of scattering matfbwhere  venient to use NEGF with the necessary extension by includ-
an enhancement of shot noise was found to be related to theg the internal potential buildup self-consistently. The latter
multistability when a tunneling system is out of equilibrium. extension is necessary and essential due to electron-electron
Shot noise has only been carefully studied in the limit ofinteractions and due to the gauge-invariance requirement that
small external bias where electric current due to each transhe noise spectra remains unchanged when voltages at all
mission subband is a linear function of biad, probes are shifted by the same constant amount. The physics
= (2€°/h)VpaeT; , WhereT,; is the zero-bias transmission co- of gauge invariance has been discussed in Ref. 23. Recently,
efficient of theith subband. However, in a nonlinear device Gramespacher and Biker** discussed the relationship be-
the electric current is a nonlinear function of bials, tween scattering matrix theory and Hamiltonian approach in

II. NONLINEAR SHOT-NOISE FORMULA
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which the transmission coefficient is expressed in terms oivhere G®=G?(E,U) is the advanced Green’s functiof,
Green's function. Since shot-noise specteal ,Alz) has =f(E—qV,) is the Fermi distribution function witv,, the
originally been written in terms of the scattering maftihe  bias potential at probg, andI' ,=T (E—qV,) is the line-
Hamiltonian approach allows us to rewrite it in terms of thewidth function.
Green’s function. We will then supplement it with the nec- A crucial next step is to calculate the potential landscape
essary steps of determining the internal electrostatic potenti& (r), which appears explicitly in the Green's functions.
buildup using the NEGF. U(r) is determined self-consistently by Poisson equation
We consider a quantum coherent multiprobe conductor

specified by the Hamiltonian
V2U=4wiqf (dE/27)G=(E,U), (7)

H:E Ekaclacka+H°ef{dn’da}+k§n [Tka'nclzadﬁc'c']' where the boundary condition is such that-V, at probe

(1) @, and the lesser Green’s functi@i" is related to the re-

tarded and advanced Green’s functi@sand G?,
whereegy,= eﬁ+ gV, . The first term of Eq(1) describes the
probes where dc signal is applied far from the conductor; the - i~ a
second term is the general Hamiltonian for the scattering G (E,U)=G EB: IT(E—qVp) f(E—qVp)G® (8)
region; the last term gives the coupling between probes and
the scattering region with the coupling mati, ,. Here Equation(7) is a nonlinear equation becaus€"? depends
Ch. (Cya) is the creatior(annihilation operator of electrons gp, U(r) [see Eq(2)]. By self-consistently solving Eqs2),
inside thea probe. Similarlyd} (d,) is the operator for the (7), and(8), we obtain the Green’s functions as well as the
scattering region. It is important to note that we will include internal potentiald. We can then calculate shot noise from
the internal Coulomb potenti&l inside the scattering region Eq. (6), which is now a nonlinear function of the external
so that the actual Hamiltonian of the scattering region ispias{V,}. This theoretical procedure can be carried out at
Heent qU. least numerically, but in this work we are interested in cases
The retarded scattering Green’s functi@i=G'(E,U),  where analytical derivations are possible.

whereU=U(r) is the electrostatic potential buildup inside  For a two-probe system, E() reduces to
the scattering region due to interacting electrons, is given

by?® q® -
((AN?)= ?AVJ' dE{[f1(1—f1)+fa(1—F)]Tr[T]
1
r — A A
RS = @ +(fy— )2 (1-T) T}, ©)
where the self-energy'==>,3" (E—qV,,) is defined as where T(E,U)=T,G'T,G? is the transmission operator
such that TfT(E,U)] is the transmission coefficient; here
, / the trace is over the matrices written in real space.
1 (T (E")dE ; . . ; .
SIE)=—| —, 3 To end this section, we discuss the gauge-invariance con-
T E-E'+ip dition. It is easy to prove that the noise spe¢&as.(6) and

) S . (9)] are gauge invariant: shifting the potential everywhere by
and 7 is a positive infinitesimal number anid,(E) is the 3 constant/,, U—U+V, andV,—V,+V,; ((A1)?) cal-
linewidth function culated from these expressions remains the same. It is useful

to note that in Eqs(6) and (9) the quantityl" depends on

bias voltage: without such a voltage dependence the gauge
— * _
[Fa(E)]m“_ZW; TamTea,nO(E~ €a). 4 invariance cannot be satisfied.

Finally, the S(_:attering matrix can be exeressed in terms of IIl. THE WIDEBAND LIMIT
Green's functions by Fisher-Lee relatf6f
In the commonly used wideband linfft the coupling ma-

Sup= 5ag_27TiWTGrWB. (5) trix I' is assumed to be independent of energy. This limit
“ corresponds to cases where the probes have no feature; thus
whereW,, satisfies ZTWQWZZFQ_ the internal potentialU(r) becomes a space-independent
Substituting Eq(5) into the shot-noise formula derived in constant, (the value ofU, depends on bias voltagé¥ ,}
Ref. 9, it is straightforward to derigé and still needs to be determinedror a single level system,

as far as the nonlinear current-voltage curve is concerned,
q wideband limit corresponds to a resonance tunneling system
(A1LAlgy=—AvD, f AETI(i 8,60 (G =i 8,,1"5G? where the scattering matrix takes a Breit-Wigner form.
T v In wideband limit the steady state Green’s function is
_ a (i P a given by Gy=1/(E—E,+il/2); for this Green’s function
LG GN(105,L pGT—1065,6 the integraloin Eq(9) can be done exactly at zero tempera-
-G pG"]f (1), (6)  ture. We obtain
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FIG. 1. The differential shot noise versus the voltage. Solid line, FIG. 2. The corresponding Fano factor of Fig. 1.

I'y=r,=0.5 andC,=C,=0.5; dotted linel';=I',=0.5 andC;
=C,=0.1; dot-dashed linel’;=I',=0.1 andC,=C,=0.4; and =C,=0.1 (dotted ling; I';=I',=0.1, C;=C,=0.4 (dot-
dashed linel’;=0.1, I';=0.8, C;=0.1, andC,=0.8. HereEr  dashed ling and an asymmetric structure with,=0.1, T,

—Ep=-2.0. =0.8, C;=0.1, andC,=0.8 (dashed ling For symmetric
structures, we always observe two peaks for the differential
q° 4F2F F§+1’2 AE, nonlinear noise whereas for the asymmetric structure there is
(( A|)2>_—AV 3 T.T arctaré F/Z) only one. This can be understood qualitatively as follows.
I e Since the shot noise at small voltage is proportionalTo
AE, F AE, —T?, the suppression reaches maximum near the resonant
arctayE ” _— point for the symmetric structure becaube T?>~1 at reso-
/2 2|(I'/2)%+ (AEy)? nance. As a result, a peak appears on each side of the reso-
nant point giving rise to the two peaks in Fig. 1. For an
_ AE; (10) asymmetric structure the shot-noise suppression is not as
(T'12)%+ (AE,)? strong as that of the symmetric caggee Fig. 2. For a

strongly asymmetric structure such as that studied here, the
whereAE;=Er—Eq—qUo+qVp. . quantum resonance is weak resulting to only one peak in the
While the internal potentidl, can be determined by the (ifferential noise spectra. For the symmetric system, the
Poisson equatio(1_7), V\_/hich requires_numerical_ analysis, we separation between the two peaks is proportiondl tFig.
instead parametrize it by geometrical capacitanCgsand 1) An effect of Coulomb interaction is to shift the resonance
C, of the left and the right coupling regiorieegions vyhere energyE, to higher value€,+qU,. For the solid and dot-
the conductor connects to the two prob&he charge in the  teq curves in Fig. 1, these resonances occur near voltages 4

well due to the Coulomb interaction is given®y and 6, respectivelythe dip position. Smaller capacitance
coefficients(dotted ling correspond to larger internal poten-
AQ:_if (dE2m)[G=(E,Ug)— Gy | tial Uy; hence the resonance position for the dotted curve
(with smaller capacitance coefficiepts shifted further rela-
=Cy(Ug—Vy)+Cy(Ug—Vs), (12) tive to the solid curvéwith larger capacitances

As discussed in the Introduction, the classical shot noise
where AQ is the total charge in the well an@; is the is given by 2j1A v. The deviation from this classical value is
equilibrium lesser Green’s function. In the wideband limit, characterized by the Fano factor, which is defined as
this equation reduces to

((A1)?)
AE Er—E Y= , (13
2 I zarcta —Tarctaf ————> 2qlAv
B F/2 r/2
where the current in wideband limit can be derived as
al’
= —[C1(Ug— V1) +Cx(Upo—V2)]. (12 ql,I, 2AE; 2AE,
a | = —| arctan —— | —arctan —

WhenC,=C,=0, Eq.(12) corresponds to the quasineutral-
ity approximation that neglects the charge polarization in theBefore presenting the plot of for our nonlinear analysis,
system. Hence, using two phenomenological const@nts two observations are in order. First, it is easy to show that in
andC,, we determineJ, from the last equation. The noise the limit (V,;—V,)—0 andI'—0, y—1. Second, in the
spectra of Eq(10) is now completely specified. opposite limit of large bias, the Fano factor is reduced to the
Figure 1 plots the nonlinear shot noise in terms of itsknown expressidit y= (F2+ 1“2)/F2 For symmetrical sys-
differential d((A1)?)/dV as a function of bias for four dif- tems (";=T",), the large bias limit givey=0.5. The same
ferent sets of parameters: symmetric structures With  behavior has been observed in the tunneling experithent
=I',=0.5, C;=C,=0.5 (solid line; I'y=I',=0.5, C; away from the NDR region. Physically, currents coming
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¢ ((A1)2)=Po+ P (V1= Vo) + Py(Vy—V;)2
+P5(Vyi—Vo)3+ -, (14)

where the equilibrium nois@, and the linear noise spectra
P, have been considered in detail befdidere we derive an
expression for the second-order nonlinear noise spé&gtiat
zero temperature.

To proceed, we first determine the internal potential
Instead of applying the phenomenological charging model to
parametrizeJ in terms of capacitance coefficients, in weakly
nonlinear analysis, we solug self-consistently order by or-

0 5 ’ 6 s 10 12 12 der in bias in exactly the same way as documented previ-
voltage ously for nonlinear analysis dtV curves®*3! Summarizing
briefly, we expandJ in powers of voltages,

FIG. 3. The Fano factor versus the voltage when the energy
cutoff is introduced forl’;=1",=0.5, C;=C,=0.5, andE—E, 1
=-20. U=Uegqt >, UVot 5 D UVt o, (19

a af

Fano factor

from both leads contribute to the Fano factor, but at Iargeg,\,hereueq is the equilibrium potential and,(r),u,s (1)

bias the current coming from the low-voltage lead can beare the characteristic potentidfs® They are determined by

neglected, thus shot noise is suppressed. Poisson-like equations that are derived by expanding(Bg.
Figure 2 plots the Fano factor versus voltage for the sam@, powers of voltagé®®! These procedures have been dis-

system parameters as those of Fig. 1. As expected, the Fag@ssed in Ref. 30 for linear characteristic potentigland in

factor approaches 0.5 for symmetric structures at Iarge. VOItRef. 31 for nonlinear characteristic potentialg; . We

age. We also observe that the Fano factor takes minimurfefer interested readers to these references for details, and

value near resonance: in the wideband lipican be smaller  from now on we assume that the characteristic potentials

than 0.5. For smallel’, the transition fromy~1 to y~0.5  have been obtained.

is much sharperfdot-dashed line This result suggests a At zero temperature the shot-noise formgig. (9)] re-

more pronounced noise reduction for conductors that argyces to

more weakly coupled to the leadsmallerI’). On the other

hand, for the asymmetric case the suppression of Fano factor o2 (Er+aVa .
is not as strondgdashed ling due to weaker quantum reso- <(AI)2>=Av—f dETr[(1-T)T]. (16)
nance. T JEp+qV,

The wideband limit of the theory does not allow negative . Al .
differential resistanc® hence Fig. 2 does not show en- D€NOtNgg(E,U)=(1-T)T, we expandg(E,U) with re-
hancement of shot noise that has been observed in the eXPECt tOE andV,
periment of Ref. 15. To obtain NDR within the wideband
approximation, we assume the leads to have a finite occupied g(E,U)~g(E,0) + dg(E,0) U
bandwidth by introducing an energy cutoff in the integration ’ ' du
of Eq. (10), as suggested by Jauho, Wingreen, and Kfeir.

This simple procedure indeed produced a Fano factor that ~ % — %

, = . 9ot g (E-Ep)+ -5 U, 17
can be greater than unity, as shown in Fig. 3. Our analysis dE du
thus reconfirms that shot noise can be enhanced by the exis- ) ) ) ) .
tence of a NDR region. The experimental refuhowed a where U is the diagonal matrix for the internal potential,
sharper increase of Fano factor when bias is varied from th&to=9(Er,0) and @go/dU)U=ZX,[ 5go/6U(x) JU(X). Sub-
of Fig. 3. This discrepancy suggests a need to go beyonglituting Eq.(17) into Eq. (16) and completing the energy
wideband limit in order to obtain a quantitative agreement. intégration, we obtain the second-order noise term

P,(V1—V,)?=A qu 9” dgo V-2
IV. WEAKLY NONLINEAR LIMIT 2(Va=Vo)"=Av2Tr 5 e (Vi= Va)
The wideband limit discussed above reduces the system to dgo
essentially a single level inside a zero-dimensional quantum +gu d(UaVatuaVa) (V= V) .
dot, this allows us to obtain closed-form results for the full
nonlinear shot-noise spectra including large bias voltages. In (18)

this section we examine another limit, namely the weakly
nonlinear limit where the bias is finite but not large. In this
case we can expand the shot-noise formula order by order iff U
bias and derive the weakly nonlinear shot-noise spectral co-
efficients. In particular, we expand the noise speld@ (9)] P.—Ap q
in the form 2

Using known relatiorS qdg,/dE=—dg,/dU and
«(r)=1, we derive

3
Tr

2m

dgo
{m(Zul—l)}. (19
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Following similar procedure one can derive higher-order V. SUMMARY

nonlinear shot-noise coefficients. For instance, the third-

order nonlinear noise spectra is found to be

3

.. q
P3_AV67T

d d?

(20

As an explicit example of the general expressigh9)
and (20), let us deriveP, and P5 for a resonance tunneling
system near a resonance pdiyt In this situation the func-
tion g(E,U) of Eq. (17) can be calculated from the Breit-
Wigner fornf® of the scattering matrix,s,z(E)~ (3,4
—iNI'I'g/A), wherel', is the decay width of barriew,
A=E—Ey+il'/2 with I'=I";+TI",. Next, the characteristic

In this work we have developed a general nonlinear dc
theory for calculating the shot-noise spectra in the mesos-
copic regime. The framework is based on nonequilibrium
Green’s functions with the important extension of solving
the internal potential self-consistently. A direct advantage of
our method is that the final expression for shot noise be-
comes gauge invariant, which is an essential requirement for
a nonlinear transport theory. Equatidis, (2), and(7) com-
pletely determine the nonlinear shot-noise spectra of an ar-
bitrary multiprobe conductor; they form the basic results of
our theory. Practically, one must solve the quantum scatter-
ing problem, which gives the Green'’s functions, in conjunc-
tion with the Poisson equation. Technically, these expres-
sions form a convenient basis for numerical predictions of
shot-noise spectra at finite bias voltages. For instance, one

potentials can be derived in  quasineutrality can easily compute various Green’s functions and the cou-

approximatiort>3! which gaveu,;=T;/T" andu;;=—2(E
—Eq) T/T'2. We thus obtain

q* [T,
Pz—AVﬂ F

dT
(1-2T) 52 (22)

and

P,=—A @ 6c_Eoror_ )3T
3T T AVE L I2 (2T— )ﬁ

d?T

r?+r2-1,r
A T2 oT-1)—+2
dE?

1"2

dT)\?2
dE

|

where T=I",I",/|A|%. Clearly, P,=0 while P3#0 for a
symmetric system for whicl'y=T",. In general, all the co-

(22

efficients of even power of bias vanish for symmetric sys-

pling matrixI" for multiprobe conductors using tight-binding
models?® and the Poisson equation can be solved in real
space using very powerful numerical technigtres.

In the wideband limit and the weakly nonlinear limit, the
basic equation$6), (2), and (7) can be analyzed in closed
form. The nonlinear theory reveals that the shot noise of a
mesoscopic conductor can be quite sensitive to the external
bias strength, and in general the suppression of noise is most
efficient near a quantum resonance point and is stronger for
symmetric systems than asymmetric systems. The suppres-
sion is also more efficient for conductors weakly coupled to
the leads. In the negative differential resistance region of the
nonlinear current-voltage characteristics, our result confirms
the existence of shot-noise enhancement, which has been ob-
served experimentally. For weakly nonlinear transport re-
gime, we have derived the shot-noise nonlinear coefficients
order by order in bias, and these coefficients should be ad-
equate when the external bias is finite but not large.
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