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Nonlinear voltage dependence of shot noise

Yadong Wei, Baigeng Wang, and Jian Wang
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

Hong Guo
Center for the Physics of Materials and Department of Physics, McGill University, Montreal, PQ, Canada H3A 2T8

~Received 19 January 1999!

The electron shot noise in a multiprobe mesoscopic conductor can have a nonlinear dependence on the
strength of driving bias voltage. This paper presents a theoretical formulation for the nonlinear noise spectra.
We pay special attention to maintain gauge invariance at the nonlinear level. At small but finite voltages,
explicit expressions for nonlinear noise spectra, expanded order by order in the bias, have been derived. In the
wideband limit, a closed-form solution of the noise spectra for finite voltages is obtained.
@S0163-1829~99!01548-9#
tu
a
oi

op
th
u
n

tio
g
be

d
u

n-
ot
io

se
tiv
n-

e
om
ee

t
.

o
n

-
ce

ng
-

the

pic
in

ilib-
ac-
vel.
ise

he

at
ex-
the
der

ot-
mit
on-
the

tudy

-
f
on-
lud-
ter
ctron
that
t all
sics
ntly,
-
in
I. INTRODUCTION

Electric shot noise of mesoscopic systems has been s
ied extensively1–4 because the spectra of it contains inform
tion that characterizes transport of the conductor. Shot n
has been used to probe the kinetics of electrons5 and to in-
vestigate correlations of electronic wave functions.6 A clas-
sical conductor is characterized by Poissonian noise,7 where
the current fluctuation̂(DI )2& in a frequency rangeDn is
proportional to electrical currentI, ^(DI )2&52qIDn, where
q is the electron charge. On the other hand, for a mesosc
conductor shot noise is influenced by two other factors:
Pauli exclusion principle and the Coulomb interaction. Pa
exclusion reduces Poissonian noise by a factor proportio
to (12T) for each transmission subband,8,9 whereT is the
transmission coefficient of the subband. Coulomb interac
can contribute to reduce or enhance shot noise dependin
system details. The Pauli suppression of shot noise has
convincingly demonstrated by several experiments.10–12,4

The universal Coulomb suppression of short noise in non
generate diffusive conductors has been observed in comp
simulations13 and confirmed theoretically using Boltzman
Langevin equation.14 The quantum enhancement of sh
noise from the classical value due to Coulomb interact
has recently been explored experimentally.15,16 For a tunnel-
ing structure with or without a magnetic field, shot noi
versus voltage increases drastically in the region of nega
differential resistance~NDR!. If one assumes sequential tu
neling of the electron transport,17 numerical results15 were in
good agreement with those of experiment, indicating the
hancement of shot noise was indeed caused by Coul
interaction. The effects of Coulomb interaction has also b
studied from the point of view of scattering matrix18 where
an enhancement of shot noise was found to be related to
multistability when a tunneling system is out of equilibrium

Shot noise has only been carefully studied in the limit
small external bias where electric current due to each tra
mission subband is a linear function of bias,I i
5(2e2/h)VbiasTi , whereTi is the zero-bias transmission co
efficient of thei th subband. However, in a nonlinear devi
the electric current is a nonlinear function of bias,I
PRB 600163-1829/99/60~24!/16900~6!/$15.00
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5I(Vbias). A notable example is the resonance tunneli
structure where currentI varies with bias in a nonlinear fash
ion giving rise to NDR. Previous investigations10,16,15,18have
already indicated that the nonlinearI -V characteristics have a
profound influence on the shot-noise spectra including
enhancement of it.

The purpose of the present work is to report a microsco
theory for calculating shot noise at the nonlinear regime
mesoscopic conductors. Our theory is based on nonequ
rium Green’s functions where the electron-electron inter
tion is treated in a self-consistent manner at the Hartree le
A direct consequence of self-consistency is that shot no
becomes only a function of voltage difference, which is t
required physical condition~gauge invariance! for a nonlin-
ear theory. We derive the nonlinear shot-noise formula
zero temperature, which, in the wideband limit, can be
actly evaluated. For more general situations beyond
wideband limit, we derive shot-noise spectra order by or
in bias voltage.

In Sec. II we present the derivation of the nonlinear sh
noise spectra. Sections III and IV present the wideband li
result with numerical evaluations, as well as the weakly n
linear analysis of the shot noise. Section V summarizes
main findings of this work.

II. NONLINEAR SHOT-NOISE FORMULA

Several theoretical approachs have been applied to s
shot noise including the scattering matrix theory,9 semiclas-
sical kinetic theory,19,20 and the nonequilibrium Green’s
function ~NEGF! theory.21,22 For a full nonlinear analysis o
quantum transport in the mesoscopic regime, it is most c
venient to use NEGF with the necessary extension by inc
ing the internal potential buildup self-consistently. The lat
extension is necessary and essential due to electron-ele
interactions and due to the gauge-invariance requirement
the noise spectra remains unchanged when voltages a
probes are shifted by the same constant amount. The phy
of gauge invariance has been discussed in Ref. 23. Rece
Gramespacher and Bu¨ttiker24 discussed the relationship be
tween scattering matrix theory and Hamiltonian approach
16 900 ©1999 The American Physical Society



o

he
c-
nt

to

th
in
an

e
n

i

e
ve

n

pe
s.

he
m
al
at

ses

r
e

on-

by

eful

uge

it
thus
nt

,
ed,
tem

is

a-

PRB 60 16 901NONLINEAR VOLTAGE DEPENDENCE OF SHOT NOISE
which the transmission coefficient is expressed in terms
Green’s function. Since shot-noise spectra^DI aDI b& has
originally been written in terms of the scattering matrix,9 the
Hamiltonian approach allows us to rewrite it in terms of t
Green’s function. We will then supplement it with the ne
essary steps of determining the internal electrostatic pote
buildup using the NEGF.

We consider a quantum coherent multiprobe conduc
specified by the Hamiltonian

H5(
k,a

ekacka
† cka1Hcen$dn ,dn

†%1 (
k,a,n

@Tka,ncka
† dn1c.c.#,

~1!

whereeka5ek
01qVa . The first term of Eq.~1! describes the

probes where dc signal is applied far from the conductor;
second term is the general Hamiltonian for the scatter
region; the last term gives the coupling between probes
the scattering region with the coupling matrixTka,n . Here
cka

† (cka) is the creation~annihilation! operator of electrons
inside thea probe. Similarly,dn

† (dn) is the operator for the
scattering region. It is important to note that we will includ
the internal Coulomb potentialU inside the scattering regio
so that the actual Hamiltonian of the scattering region
Hcen1qU.

The retarded scattering Green’s functionGr5Gr(E,U),
whereU5U(r ) is the electrostatic potential buildup insid
the scattering region due to interacting electrons, is gi
by25

Gr~E,U !5
1

E2H2qU2S r
, ~2!

where the self-energyS r[(aSa
r (E2qVa) is defined as

Sa
r ~E!5

1

2pE Ga~E8!dE8

E2E81 ih
, ~3!

and h is a positive infinitesimal number andGa(E) is the
linewidth function

@Ga~E!#mn52p(
k

Tka,m* Tka,nd~E2eka!. ~4!

Finally, the scattering matrix can be expressed in terms
Green’s functions by Fisher-Lee relation26,24

sab5dab22p iWa
†GrWb , ~5!

whereWa satisfies 2pWaWa
†5Ga .

Substituting Eq.~5! into the shot-noise formula derived i
Ref. 9, it is straightforward to derive27

^DI aDI b&5
q2

p
Dn(

g,d
E dE Tr@~ idadGaGr2 idagGdGa

2GdGaGaGr !~ idbgGbGr2 idbdGgGa

2GgGaGbGr !# f g~12 f d!, ~6!
f

ial

r

e
g
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s
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whereGa5Ga(E,U) is the advanced Green’s function,f g
[ f (E2qVg) is the Fermi distribution function withVg the
bias potential at probeg, andGa[Ga(E2qVa) is the line-
width function.

A crucial next step is to calculate the potential landsca
U(r ), which appears explicitly in the Green’s function
U(r ) is determined self-consistently by Poisson equation

¹2U54p iqE ~dE/2p!G,~E,U !, ~7!

where the boundary condition is such thatU→Va at probe
a, and the lesser Green’s functionG, is related to the re-
tarded and advanced Green’s functionsGr andGa,

G,~E,U !5Gr(
b

iGb~E2qVb! f ~E2qVb!Ga. ~8!

Equation~7! is a nonlinear equation becauseGr ,a depends
on U(r ) @see Eq.~2!#. By self-consistently solving Eqs.~2!,
~7!, and ~8!, we obtain the Green’s functions as well as t
internal potentialU. We can then calculate shot noise fro
Eq. ~6!, which is now a nonlinear function of the extern
bias $Va%. This theoretical procedure can be carried out
least numerically, but in this work we are interested in ca
where analytical derivations are possible.

For a two-probe system, Eq.~6! reduces to

^~DI !2&5
q2

p
DnE dE$@ f 1~12 f 1!1 f 2~12 f 2!#Tr@ T̂#

1~ f 12 f 2!2Tr@~12T̂!T̂#%, ~9!

where T̂(E,U)5G1GrG2Ga is the transmission operato
such that Tr@ T̂(E,U)# is the transmission coefficient; her
the trace is over the matrices written in real space.

To end this section, we discuss the gauge-invariance c
dition. It is easy to prove that the noise spectra@Eqs.~6! and
~9!# are gauge invariant: shifting the potential everywhere
a constantVo , U→U1Vo andVa→Va1Vo ; ^(DI )2& cal-
culated from these expressions remains the same. It is us
to note that in Eqs.~6! and ~9! the quantityG depends on
bias voltage: without such a voltage dependence the ga
invariance cannot be satisfied.

III. THE WIDEBAND LIMIT

In the commonly used wideband limit,28 the coupling ma-
trix G is assumed to be independent of energy. This lim
corresponds to cases where the probes have no feature;
the internal potentialU(r ) becomes a space-independe
constantU0 ~the value ofU0 depends on bias voltages$Va%
and still needs to be determined!. For a single level system
as far as the nonlinear current-voltage curve is concern
wideband limit corresponds to a resonance tunneling sys
where the scattering matrix takes a Breit-Wigner form.

In wideband limit the steady state Green’s function
given by G0

r 51/(E2E01 iG/2); for this Green’s function
the integral in Eq.~9! can be done exactly at zero temper
ture. We obtain
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^~DI !2&5
q2

p
Dn

4G1
2G2

2

G3 H G1
21G2

2

2G1G2
FarctanS DE1

G/2 D
2arctanS DE2

G/2 D G2
G

2 F DE1

~G/2!21~DE1!2

2
DE2

~G/2!21~DE2!2G J , ~10!

whereDEb5EF2E02qU01qVb .
While the internal potentialU0 can be determined by th

Poisson equation~7!, which requires numerical analysis, w
instead parametrize it by geometrical capacitancesC1 and
C2 of the left and the right coupling regions~regions where
the conductor connects to the two probes!. The charge in the
well due to the Coulomb interaction is given by29

DQ52 i E ~dE/2p!@G,~E,U0!2G0
,#

5C1~U02V1!1C2~U02V2!, ~11!

where DQ is the total charge in the well andG0
, is the

equilibrium lesser Green’s function. In the wideband lim
this equation reduces to

(
b

Gb arctanS DEb

G/2 D2GarctanS EF2E0

G/2 D
5

pG

q
@C1~U02V1!1C2~U02V2!#. ~12!

WhenC15C250, Eq.~12! corresponds to the quasineutra
ity approximation that neglects the charge polarization in
system. Hence, using two phenomenological constantsC1
andC2, we determineU0 from the last equation. The nois
spectra of Eq.~10! is now completely specified.

Figure 1 plots the nonlinear shot noise in terms of
differential d^(DI )2&/dV as a function of bias for four dif-
ferent sets of parameters: symmetric structures withG1
5G250.5, C15C250.5 ~solid line!; G15G250.5, C1

FIG. 1. The differential shot noise versus the voltage. Solid li
G15G250.5 andC15C250.5; dotted line,G15G250.5 andC1

5C250.1; dot-dashed line,G15G250.1 andC15C250.4; and
dashed line,G150.1, G250.8, C150.1, andC250.8. HereEF

2E0522.0.
e

5C250.1 ~dotted line!; G15G250.1, C15C250.4 ~dot-
dashed line!; and an asymmetric structure withG150.1, G2
50.8, C150.1, andC250.8 ~dashed line!. For symmetric
structures, we always observe two peaks for the differen
nonlinear noise whereas for the asymmetric structure the
only one. This can be understood qualitatively as follow
Since the shot noise at small voltage is proportional to9 T
2T2, the suppression reaches maximum near the reso
point for the symmetric structure becauseT'T2'1 at reso-
nance. As a result, a peak appears on each side of the
nant point giving rise to the two peaks in Fig. 1. For
asymmetric structure the shot-noise suppression is no
strong as that of the symmetric case~see Fig. 2!. For a
strongly asymmetric structure such as that studied here,
quantum resonance is weak resulting to only one peak in
differential noise spectra. For the symmetric system,
separation between the two peaks is proportional toG ~Fig.
1!. An effect of Coulomb interaction is to shift the resonan
energyE0 to higher valuesE01qU0. For the solid and dot-
ted curves in Fig. 1, these resonances occur near voltag
and 6, respectively~the dip position!. Smaller capacitance
coefficients~dotted line! correspond to larger internal poten
tial U0; hence the resonance position for the dotted cu
~with smaller capacitance coefficients! is shifted further rela-
tive to the solid curve~with larger capacitances!.

As discussed in the Introduction, the classical shot no
is given by 2qIDn. The deviation from this classical value
characterized by the Fano factor, which is defined as

g[
^~DI !2&
2qIDn

, ~13!

where the currentI in wideband limit can be derived as

I 5
qG1G2

pG FarctanS 2DE1

G D2arctanS 2DE2

G D G .
Before presenting the plot ofg for our nonlinear analysis
two observations are in order. First, it is easy to show tha
the limit (V12V2)→0 and G→0, g→1. Second, in the
opposite limit of large bias, the Fano factor is reduced to
known expression21 g5(G1

21G2
2)/G2. For symmetrical sys-

tems (G15G2), the large bias limit givesg50.5. The same
behavior has been observed in the tunneling experime15

away from the NDR region. Physically, currents comi

, FIG. 2. The corresponding Fano factor of Fig. 1.
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PRB 60 16 903NONLINEAR VOLTAGE DEPENDENCE OF SHOT NOISE
from both leads contribute to the Fano factor, but at la
bias the current coming from the low-voltage lead can
neglected, thus shot noise is suppressed.

Figure 2 plots the Fano factor versus voltage for the sa
system parameters as those of Fig. 1. As expected, the
factor approaches 0.5 for symmetric structures at large v
age. We also observe that the Fano factor takes minim
value near resonance: in the wideband limitg can be smaller
than 0.5. For smallerG, the transition fromg'1 to g'0.5
is much sharper~dot-dashed line!. This result suggests
more pronounced noise reduction for conductors that
more weakly coupled to the leads~smallerG). On the other
hand, for the asymmetric case the suppression of Fano fa
is not as strong~dashed line! due to weaker quantum reso
nance.

The wideband limit of the theory does not allow negati
differential resistance;28 hence Fig. 2 does not show en
hancement of shot noise that has been observed in the
periment of Ref. 15. To obtain NDR within the wideban
approximation, we assume the leads to have a finite occu
bandwidth by introducing an energy cutoff in the integrati
of Eq. ~10!, as suggested by Jauho, Wingreen, and Mei28

This simple procedure indeed produced a Fano factor
can be greater than unity, as shown in Fig. 3. Our anal
thus reconfirms that shot noise can be enhanced by the
tence of a NDR region. The experimental result15 showed a
sharper increase of Fano factor when bias is varied from
of Fig. 3. This discrepancy suggests a need to go bey
wideband limit in order to obtain a quantitative agreemen

IV. WEAKLY NONLINEAR LIMIT

The wideband limit discussed above reduces the syste
essentially a single level inside a zero-dimensional quan
dot, this allows us to obtain closed-form results for the f
nonlinear shot-noise spectra including large bias voltages
this section we examine another limit, namely the wea
nonlinear limit where the bias is finite but not large. In th
case we can expand the shot-noise formula order by ord
bias and derive the weakly nonlinear shot-noise spectral
efficients. In particular, we expand the noise spectra@Eq. ~9!#
in the form

FIG. 3. The Fano factor versus the voltage when the ene
cutoff is introduced forG15G250.5, C15C250.5, andEF2E0

522.0.
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^~DI !2&5P01P1~V12V2!1P2~V12V2!2

1P3~V12V2!31•••, ~14!

where the equilibrium noiseP0 and the linear noise spectr
P1 have been considered in detail before.9 Here we derive an
expression for the second-order nonlinear noise spectraP2 at
zero temperature.

To proceed, we first determine the internal potentialU.
Instead of applying the phenomenological charging mode
parametrizeU in terms of capacitance coefficients, in weak
nonlinear analysis, we solveU self-consistently order by or
der in bias in exactly the same way as documented pr
ously for nonlinear analysis ofI -V curves.30,31 Summarizing
briefly, we expandU in powers of voltages,

U5Ueq1(
a

uaVa1
1

2 (
ab

uabVaVb1•••, ~15!

whereUeq is the equilibrium potential andua(r ),uab . . . (r )
are the characteristic potentials.30,31 They are determined by
Poisson-like equations that are derived by expanding Eq.~7!
in powers of voltage.30,31 These procedures have been d
cussed in Ref. 30 for linear characteristic potentialua and in
Ref. 31 for nonlinear characteristic potentialsuab . . . . We
refer interested readers to these references for details,
from now on we assume that the characteristic potent
have been obtained.

At zero temperature the shot-noise formula@Eq. ~9!# re-
duces to

^~DI !2&5Dn
q2

p E
EF1qV2

EF1qV1
dE Tr @~12T̂!T̂#. ~16!

Denoting g(E,U)[(12T̂)T̂, we expandg(E,U) with re-
spect toE andV,

g~E,U !'g~E,0!1
dg~E,0!

dU
U

'g01
dg0

dE
~E2EF!1

dg0

dU
U, ~17!

where U is the diagonal matrix for the internal potentia
g05g(EF,0) and (dg0 /dU)U[(x@dg0 /dU(x)#U(x). Sub-
stituting Eq. ~17! into Eq. ~16! and completing the energ
integration, we obtain the second-order noise term

P2~V12V2!25Dn
q2

p
Tr Fq2

2

dg0

dE
~V1

22V2
2!

1
dg0

dU
q~u1V11u2V2!~V12V2!G .

~18!

Using known relations23 qdg0 /dE52dg0 /dU and
(aua(r )51, we derive

P25Dn
q3

2p
TrFdg0

dU
~2u121!G . ~19!

y
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Following similar procedure one can derive higher-ord
nonlinear shot-noise coefficients. For instance, the th
order nonlinear noise spectra is found to be

P35Dn
q3

6p
TrF3q

dg0

dU
u111

d2g0

dU2
~123u113u1

2!G .

~20!

As an explicit example of the general expressions~19!
and ~20!, let us deriveP2 and P3 for a resonance tunnelin
system near a resonance pointE0. In this situation the func-
tion g(E,U) of Eq. ~17! can be calculated from the Brei
Wigner form23 of the scattering matrix,sab(E);(dab

2 iAGaGb/D), whereGa is the decay width of barriera,
D5E2E01 iG/2 with G5G11G2. Next, the characteristic
potentials can be derived in quasineutral
approximation,23,31 which gaveu15G1 /G and u11522(E
2E0)T/G2. We thus obtain

P25Dn
q4

2p

G22G1

G
~122T!

dT

dE
~21!

and

P352Dn
q5

6p H 6
E2E0

G2
T~2T21!

dT

dE

1
G1

21G2
22G1G2

G2 F ~2T21!
d2T

dE2
12S dT

dED 2G J ,

~22!

where T5G1G2 /uDu2. Clearly, P250 while P3Þ0 for a
symmetric system for whichG15G2. In general, all the co-
efficients of even power of bias vanish for symmetric s
tems since shot noise cannot change when bias changes
It is known that resonance tunneling with Breit-Wigner sc
tering matrix is equivalent to the wideband limit in NEG
analysis. One can straightforwardly confirm that expressi
~21! and ~22! are indeed obtained by expanding NEGF
sults~10! and~12! to the appropriate order in bias. This give
strong confirmation on the validity of weakly nonline
analysis presented in this section.
es
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V. SUMMARY

In this work we have developed a general nonlinear
theory for calculating the shot-noise spectra in the mes
copic regime. The framework is based on nonequilibriu
Green’s functions with the important extension of solvi
the internal potential self-consistently. A direct advantage
our method is that the final expression for shot noise
comes gauge invariant, which is an essential requiremen
a nonlinear transport theory. Equations~6!, ~2!, and~7! com-
pletely determine the nonlinear shot-noise spectra of an
bitrary multiprobe conductor; they form the basic results
our theory. Practically, one must solve the quantum scat
ing problem, which gives the Green’s functions, in conjun
tion with the Poisson equation. Technically, these expr
sions form a convenient basis for numerical predictions
shot-noise spectra at finite bias voltages. For instance,
can easily compute various Green’s functions and the c
pling matrixG for multiprobe conductors using tight-bindin
models;25 and the Poisson equation can be solved in r
space using very powerful numerical techniques.32

In the wideband limit and the weakly nonlinear limit, th
basic equations~6!, ~2!, and ~7! can be analyzed in close
form. The nonlinear theory reveals that the shot noise o
mesoscopic conductor can be quite sensitive to the exte
bias strength, and in general the suppression of noise is m
efficient near a quantum resonance point and is stronge
symmetric systems than asymmetric systems. The supp
sion is also more efficient for conductors weakly coupled
the leads. In the negative differential resistance region of
nonlinear current-voltage characteristics, our result confir
the existence of shot-noise enhancement, which has been
served experimentally. For weakly nonlinear transport
gime, we have derived the shot-noise nonlinear coefficie
order by order in bias, and these coefficients should be
equate when the external bias is finite but not large.
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