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Coulomb-Induced Positive Current-Current Correlations in Normal Conductors
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In the white-noise limit current correlations measured at different contacts of a mesoscopic conductor
are negative due to the antisymmetry of the wave function (Pauli principle). We show that current fluc-
tuations at capacitive contacts induced via the long range Coulomb interaction due to charge fluctuations
in the mesoscopic sample can be positively correlated. The positive correlations are a consequence of
the extension of the wave functions into areas near both contacts. As an example we investigate in
detail a quantum point contact in a high magnetic field under conditions in which transport is along an
edge state.

PACS numbers: 72.10.–d, 72.70.+m
Fluctuations in beams of photons have long been of
interest in optics. In 1954 Hanbury Brown and Twiss [1]
showed that an investigation of the correlations of light of
a star permits the determination of the diameter of the star.
Electrical analogs to this effect have long been suggested
but due to the interaction between carriers, it is difficult
to achieve the necessary degeneracy in a vacuum beam
experiment. In electrical conductors, however, the situ-
ation is fundamentally different, since at low temperatures,
high filling factors are easy to achieve. Current-current
correlations in multiterminal conductors were analyzed
theoretically using both quantum theories and classical
approaches [2–5]. It can easily be demonstrated that in the
white-noise limit, current-current correlations in phase-
coherent conductors are negative [2,6]. Indeed, recent
experiments by Henny et al. [7], Oliver et al. [8], and
Oberholzer et al. [9] have demonstrated negative corre-
lations in good agreement with theory. The fermionic
character of current fluctuations demonstrated in these ex-
periments reflects the independent quasiparticle transport
in the low frequency white-noise limit [10]. However,
such a simple situation cannot be expected to hold over
a wide range of frequencies. It is well known that
time-dependent transport in conductors is collective due
to the long range Coulomb interaction, which leads to
bosonic excitations (plasmons), and that consequently we
expect a different (bosonic) behavior of current-current
fluctuations. In this work, we demonstrate that already at
(in principle) arbitrarily low frequencies it is possible to
find current correlations which are positively correlated in
purely normal conductors. To achieve this, we investigate
current fluctuations and their correlations at contacts
which are purely capacitively coupled to a conductor.
Current at these contacts is a consequence of charge
fluctuations in the mesoscopic conductor and not, as in the
theories and experiments discussed above, a consequence
of carriers transmitted or reflected into different contacts.

We initially consider the general system shown in Fig. 1,
where we have a mesoscopic conductor in contact with two
ideal leads (1 and 2) and Coulomb coupled to two macro-
scopic gates (A and B). We consider the scenario where
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the two gates are Coulomb coupled to separate regions of
the conductor (VA and VB), and assume that there is no
direct Coulomb coupling between regions VA and VB. It
will be apparent how such effects could be taken into ac-
count. Having shown how it is possible to calculate the
charge correlations between the two gates (A and B) we
proceed to consider four specific examples, for a quantum
point contact (QPC) in a high magnetic field, demonstrat-
ing that for these systems the current correlations can be
both positive and negative.

Within the context of scattering theory the charging and
charge fluctuation phenomena in gated mesoscopic con-
ductors have already been investigated [11,12]. The work
described in this Letter develops this understanding for
structures with more than one macroscopic gate coupled
to the mesoscopic conductor. It has already been shown
[12] that for a mesoscopic structure Coulomb coupled to
a single macroscopic gate the fluctuations in the charge
in the mesoscopic region induce charge fluctuations in a
macroscopic gate which is placed in close proximity to
the mesoscopic region. The dynamics of the system are
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FIG. 1. Conductor connected via ideal leads (1 and 2) to reser-
voirs with spatially separate regions capacitively coupled to gates
(A and B).
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governed by two quantities, the charge relaxation re-
sistance of the structure R and the electrochemical
capacitance of the structure Cm. RCm, in analogy with
macroscopic systems, denotes the charge relaxation time
of the conductor. For a mesoscopic system, at equilibrium,
Coulomb coupled to a single macroscopic gate, in the zero
temperature limit, the current fluctuation spectrum in the
gate, to leading order in the frequency, is given by [12]
S

q
II �v� � 2v2h̄jvjC2

mRq, where Rq is the equilibrium
charge relaxation resistance. Out of equilibrium and at
zero temperature it has been shown to leading order in the
applied voltage that [12] SV

II �v� � 2v2jeV jC2
mRV , where

we call RV the Schottky resistance to emphasize that the
charge fluctuations are associated with shot noise. In the
presence of more than one gate we show below that the
equivalent spectrum is now given by

S
q
IaIb

�v� � 2v2h̄jvjCa
mCb

mRab
q , (1)

SV
IaIb

�v� � 2v2jeV jCa
mCb

mR
ab
V , (2)

where the subscripts and superscripts a and b specify the
gates in the system. For example, if a � b then Eq. (1)
defines the equilibrium current fluctuation spectrum in gate
a, whereas if a fi b Eq. (1) defines the equilibrium cur-
rent correlations between gates a and b.

Consider a mesoscopic conductor attached to L normal
ideal leads. This conductor can be described by a scatter-
ing matrix, with elements sgd, which relates electron am-
plitudes incident from contact d to outgoing amplitudes in
contact g. If we let regions of the mesoscopic conductor
be capacitively coupled to gates, as depicted in Fig. 1, the
current fluctuations induced in a given gate are related to
the charge fluctuations in the region of the conductor which
is Coulomb coupled to the gate. If we have, as in Fig. 1,
more than one gate, then we need to calculate the charge
fluctuations in separate regions of the conductor, allowing
us to then calculate both the charge fluctuations and the
correlations of the currents in the gates. The bare charge
fluctuations in a region Va are governed by the density of
states matrix [11], whose elements are

N
�h�

dg �r� �
21
2pi

X
n

∑
s�

nd���E, U�r����
dsng ���E, U�r����

edU�r�

∏
,

(3)

where r is in the volume Vh and U�r� is the electro-

static potential at position r. For example, N
�A�

12 �r� is
the electron density, at position r in volume VA, associ-
ated with two electron current amplitudes incident from
contacts 1 and 2. N

�h�
gg �r� are elements of a gener-

alized local Wigner-Smith time-delay matrix [13]. The
explicit relation of the charge operator to local wave func-
tions is given in [11], and a detailed derivation is found in
Ref. [14].

The fluctuations of the bare charge in a region Vh can
be found from the charge operator [12] eN̂�h� given by
N̂h�v� �
X
dg

Z
Vh

d3r
Z

dE â
y
d�E�

3 N
�h�

dg �r; E, E 1 h̄v�âg�E 1 h̄v� , (4)

where the zero-frequency limit of N
�h�

dg �r; E, E 1 h̄v�
is given by Eq. (3). In the above equation â

y
d�E� creates

an incoming electron in lead d. The true charge fluctua-
tions must be obtained by taking into account the Coulomb
interaction.

Given the above equations we now want to consider the
system shown in Fig. 1 and to calculate charge fluctuations
in the two regions VA and VB, hence enabling us to deduce
the charge in each of the two gates. The first step is to find
an expression for the charge operator in the two regions.
Assuming that the geometrical capacitances which couple
the two gates to two separate regions of the mesoscopic
conductor dominate all other capacitances we can express
the charge in the two regions of the conductor in two ways.
First with the help of the potential operators for the two
regions, ÛA�B�, we have

Q̂A � CAÛA 1 C�ÛA 2 ÛB� , (5)

Q̂B � CBÛB 1 C�ÛB 2 ÛA� , (6)

where C is the capacitive coupling between regions VA and
VB. The two preceding equations assume that the gates A
and B are macroscopic and have no dynamics of their own.
We can also determine the charge in a region Q̂A�B� as the
sum of the bare charge fluctuations in the region of interest
eN̂A�B� and the induced charges generated by a fluctuating
induced electrical potential in the same region. Within
the random phase approximation the induced charges are
proportional to the average frequency dependent density of
states,

NA�B� �
X
g

Z
VA�B�

d3r N ���A�B����
gg �r� , (7)

in the region of interest times the fluctuating potential.
Thus the net charge, in regions A and B, is

Q̂A � CAÛA 1 C�ÛA 2 ÛB� � eN̂A 2 e2NAÛA , (8)

Q̂B � CBÛB 1 C�ÛB 2 ÛA� � eN̂B 2 e2NBÛB . (9)

Solving Eqs. (8) and (9) gives us, for the potential opera-
tors,µ

ÛA

ÛB

∂
�

µ
1
d

∂ µ
�GB�21 C

C �GA�21

∂ µ
eN̂A

eN̂B

∂
, (10)

where Ga � �Ca 1 C 1 e2Na�21 and d �
�GA�21�GB�21 2 C2. Now that we have an expression
for the potential operators we can calculate the fluctuation
spectra of the internal potentials 2pSUaUb

�v�d�v 1

v0� � �1�2� �Ûa�v�Ûb�v0� 1 Ûb�v0�Ûa�v��, where
�· · ·� denotes a quantum statistical average over products
of â and ây operators [11]. From this and using the fact
3387



VOLUME 84, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 10 APRIL 2000
that SQaQb
� CaCbSUaUb

we obtain the spectra of the
screened charges. For C � 0 (i.e., no capacitive coupling
between the two regions VA and VB) we find

SQaQb
�v� �

Cma
Cmb

NaNb

X
gd

Z
dE Fdg Tr�N �a�

dg �N �b�
dg �y� ,

(11)

where Fdg � fd�E� �1 2 fg�E 1 h̄v�� 1 fg�E 1

h̄v� �1 2 fd�E��,

N
�h�

dg �
Z

Vh

d3r N
�h�

dg �r� , (12)

and the electrochemical capacitance for a region h is

Cmh
�

e2NhCh

Ch 1 e2Nh

. (13)

Equation (11) gives us an expression for the charge fluc-
tuation spectra. When a � b, we have the fluctuation
spectra in the gate a, and when a fi b, Eq. (11) gives us
the charge correlations between the two gates.

At equilibrium, at zero temperature Eq. (11) can be sim-
plified to SQaQb

�v� � 2Cma
Cmb

R
ab
q h̄jvj where

Rab
q �

h
2e2

P
gd Tr�N �a�

dg �N �b�
dg �y�

Tr�
P

g N
�a�

gg �Tr�
P

g N
�b�

gg �
. (14)

The other limit we can consider is the zero temperature,
low frequency limit of the charge spectra to leading
order in applied voltage. Evaluating Eq. (11) we find
SQaQb

�v� � 2Cma
Cmb

R
ab
V jeV j where

R
ab
V �

h
2e2

Tr�N �a�
12 �N �b�

12 �y� 1 Tr�N �a�
21 �N �b�

21 �y�

Tr�
P

g N
�a�

gg �Tr�
P

g N
�b�

gg �
.

(15)

From SIaIb
� v2SQaQb

we obtain Eqs. (1) and (2).
Having constructed the above methodology we now

wish to consider a simple example to see if the current
correlations between gates are positive or negative. The
example we choose is a QPC in a high magnetic field [15],
such that the transport is governed by edge states. We con-
sider four scenarios, as shown in Fig. 2, keeping gate A
fixed and calculating the charge correlations between gate
A and gate B when gate B is in each of the four separate
positions shown. First we consider the situation where gate
A is adjacent to gate B [in position (i)]. These two gates
are Coulomb coupled to two separate regions of the same
edge state of interest (VA and VB).

If we consider only one edge state, then the scattering
matrix for this system is

S �

µ
r t

t0e�iuA1iuB� r 0e�iuA1iuB�

∂
, (16)

where the phases, uA and uB, have been introduced ex-
plicitly. They arise from the fact that a carrier traversing
region A or B adjacent to either of the gates acquires a
phase uA�UA� or uB�UB� depending upon the region over
3388
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FIG. 2. QPC in a high magnetic field. Gate A is fixed and the
charge correlations between gates A and B for the four positions
(i), (ii), (iii), and (iv) of gate B are evaluated. In each case
the two gates (A and B) are Coulomb coupled to the edge state
which traverses regions VA and VB.

which the carrier is traversing. UA (UB) characterizes the
potential in region A (B).

To calculate the charge operator we have to evaluate
the variation of the scattering matrix with respect to the
potential UA and UB [Eq. (3)]. Only s21 and s22 depend
upon these potentials. We find

dsdg

edUA�B�
�

µ
dsdg

duA�B�

∂ µ
duA�B�

edUA�B�

∂
. (17)

But �duA�B��edUA�B�� � 22pNA�B� where NA�B� is the
density of states of the edge state in region VA�B�. From

this we find N
���A�B����

11 � NA�B�T , N
���A�B����

22 � NA�B�R, and

N
���A�B����

12 � �N ���A�B����
21 �� � NA�B���t0��r 0� , (18)

where T � jtj2 � jt0j2 and R � 1 2 T . Using the fact
that the general scattering matrix for the system can be
parametrized in the following manner:

S �

µ
i
p

R ei�x1f1�
p

T ei�x1f2�
p

T ei�x2f2� i
p

R ei�x2f1�

∂
, (19)

we have for Eq. (16)

r � i
p

R ei�x1f1�, r 0 � i
p

R ei�x2f12�uA1uB��, (20)

t �
p

T ei�x1f2�, t0 �
p

T ei�x2f22�uA1uB��. (21)

Thus from the above we find

Rab
q � �h�2e2� and R

ab
V � �h�e2�TR . (22)

What we are really interested in is the sign of Eqs. (1) and
(2); we know for this system that both R

ab
q and R

ab
V are

positive, and CmA and CmB are positive. In particular, for
the structure we have considered 1�e2NA�B� ø 1�CA�B�;
hence CmA�B� � CA�B�. From this we deduce that the current
correlations observed between the two gates in this system
will be positive and characterized by Eq. (22).

Having considered the example where gate B sees the
same edge state as gate A, it is instructive to consider the
case where gate B is in position (ii). In this case a carrier
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TABLE I. Sign of equilibrium ���Sq
IAIB �v���� and nonequilibrium

���SV
IAIB �v���� current correlations between gates A and B for the

four positions of gate B relative to gate A.

(i) (ii) (iii) (iv)

S
q
IAIB �v� .0 �0 $0 $0

SV
IAIB �v� $0 #0 �0 �0

which is seen by gate A will not be seen by gate B. For
this case the scattering matrix is as follows:

S �

µ
reiuB teiuB

t0eiuA r 0eiuA

∂
. (23)

Following the same methodology as before we find

RAA
q � RBB

q � �h�2e2� , (24)

RAB
q � RBA

q � 0 , (25)

RAA
V � RBB

V � 2RAB
V � 2RBA

V � �h�e2�TR . (26)

The equilibrium correlations proportional to RAB
q are zero,

whereas the nonequilibrium correlations given by Eq. (26)
are negative.

We also consider scenarios (iii) and (iv) depicted in
Fig. 2. It is possible to calculate RAB

q and RAB
V which

characterize the equilibrium and nonequilibrium current
correlations between the two gates. For clarity we have
summarized our results in Table I by showing the possible
signs of current correlations between the two gates, for the
four possible gate configurations shown in Fig. 2.

In this work we have shown that through the consider-
ation of Coulomb coupling macroscopic gates to a meso-
scopic conductor it is possible, for the example we have
studied, to gain positive current correlations between the
current fluctuations induced into the gates. The difference
between this result and the result which would be obtained
if we replaced our gates with leads, where the current cor-
relations would be negative, can easily be understood by
explaining the fundamental difference which arises when
only Coulomb contacts are considered. This difference is
that it is possible for a carrier to be seen by both contacts
when the gates are attached only via the Coulomb interac-
tion, which is not the case when we replace the gates with
leads where a carrier cannot enter both leads. Consider
scenario (i) shown in Fig. 2: a carrier which is seen by
gate A must also be seen by gate B. Replacing the gates
with contacts, then a carrier traversing along the edge state
of interest can go into either lead A or lead B or continue
into lead 2.

We believe that this is the first prediction of such positive
current correlations in normal mesoscopic conductors. Ex-
perimental work on induced charging in macroscopic gates
Coulomb coupled to mesoscopic conductors has been car-
ried out [16], and we suggest from this work that induced
current fluctuations and correlations between gates in such
systems should be examined in the future.
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