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Charge fluctuations in a quantum point contact attached to a superconducting lead
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We show how to calculate the charge noise spectrum in a normal mesoscopic conductor, which is capaci-
tively coupled to a macroscopic gate, when this conductor is attacHeddomal leads an¥ superconducting
leads, the only restriction being that the superconducting leads must be at the same chemical potential. We then
proceed to examine results for a quantum point coff@Bt0 in a normal lead connecting to a superconductor.
Of interest is the fluctuating current in a gate capacitively coupled to a QPC. The results are compared with the
case when all leads are normal. We find a doubling of the equilibrium charge fluctuations and a large enhance-
ment (>2) in the current noise spectrum to first order |&V|, when a channel in the QPC is opening.
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Theory and experimental measurements of the electricaklate particle and hole amplitude&,(3= p,h) incoming at
transport properties of mesoscopic conductors, which eitherontact § to the outgoing amplitudes at contagt Over a
contain superconducting regions or are attached to supercoregion {) the mesoscopic conductor is capacitively coupled
ducting leads, have generated great interest. Of particuldo a gate. The current fluctuations induced into the gate can
interest are the noise properties of normal superconductinge found from the charge fluctuations of the mesoscopic
interfaces. While many aspects of the low frequency-currentonducto® The investigation of the charge fluctuations
noise spectrahave been understood by generalizing the scatstarts from the analysis of the bare charge fluctuations which
tering approach® of normal conductors, the fluctuations of are then screened to find the true charge fluctuafiSf@r a
the charge have remained unexplored. We generalize theormal conductor the bare charge fluctuations are determined
work done for normal mesoscopic conducfoPso systems by a density of states matrix which has dimensibr&. For
which contain superconducting leads. The only restrictionsybrid structure the matrix has dimensionsl8L: Any
are that there must be one or more normal leads, the supeseattering channel, independent of whether the incoming or
conducting leads must all be at the same chemical potentiabutgoing channels are electron- or hole-like, can contribute
and any gates in the structure only see normal regions of th® the electron density at a poininside the conductor. Thus
conductor. Having developed this technique, we shall conto express the density in terms of the scattering matrix re-
sider one particular example shown in Fig. 1, a quanturmuires a conceptual trick: It is useful to imagine that there are
point contact QPO attached to one normal lead, one super-two electrostatic potentials)P andU", which each act sepa-
conducting lead and capacitively coupled, via the Coulombrately on the electrons and hofsThe matrix which gov-
interaction, to a macroscopic gate. We are interested in therns the charge fluctuations can then be found by testing the
charge fluctuations in the hybrid structure which can be meascattering matrix elements with regard to small variations of
sured by observing the current fluctuations at the gate. lthe electron and hole potentials, generalizing Refs. 8 and 9.
turns out that at equilibrium the current fluctuations are deThis procedure gives the following density-of-states
termined by theRGtime constant. Thus our primary aim is element&
to find the charge relaxation resistariRand the capacitance

C for hybrid structures. In the presence of transport, a resis- _ ds, s [E,U(N)]
tance Ry, which reflects the shot nois€ of the hybrid 1 () =—| st [EU(N)]—E
structure, appears. Ya®p 4ari | Ve T q7ouU"(r)

Consider a mesoscopic conductor withnormal ideal
leads andM superconducting leads. The conductor can be —s, [E,U(N)]
described by a scattering matrix with elemeal;%ﬁﬁ which I\Yab 1=

75, 5,[E.U(N)]

gourn | W

where the labels, v, and § denote contactsl(. . .L), «, B,
S \, and » denote the electron/hole degrees of freedqth]
andgP=e= —q". The functional derivatives are taken at the
equilibrium electrostatic potenti&lP=U"= Ueq. To give an
example, N szp(lh,r) is the hole density associated with
G two electron current amplitudes incident from contacts 1 and
2 and a reflected outgoing hole amplitude in contact 1. With
the help of these basic expressions we can now find both the
average density of states as well as the fluctuations. The hole
FIG. 1. Quantum point contact, attached to one normal and ondensity of states of a regiof) of the conductor isNP
superconducting lead, capacitively coupled to a gate. =N"(p) +N"(h), where
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N (@)= | d* TN | (v,.1)] )
vy JQ ara
and the particle density of states is
NP=NP(p)+NP(h) with
NP(@)=2 | d*r TN (nu0)] (3)
ZoN a’a

The trace is over open quantum chann&l§(g) is the in-
jectivity of particles(holeg [B=p(h)], from all contacts
into the conductor, given a change in the partig¢iele) po-
tential[«=p(h)].

The fluctuations of the bare charge in a regidrcan be
found from the charge operateN given by

eMw)=2 X
ya nvh
oB

X./\/‘;Za(sﬁ(V)\,r,E,E+hﬁ))égﬁ(E+h(D), (4)

d? deAT E)q”
9 a, (E)q

where the zero-frequency limit o‘f/;’ 53(1/}\ I E,E+Aw)is

given by Eq.(1). In Eq. (4), é;a(E) creates an incoming
electron/hole ¢=p/h) in lead y. The true charge fluctua-
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conductor*® We have NP(h)=N"(p)=0 and N=NP(p)
=N"(h). Going back to Eq(5) we can solve it forsU and

can use this solution to determine the electrochemical ca-
pacitance of the hybrid structure visvés the gate. We find

5 5 Ce’N
Clism Fa- Ao ®)
&V 8V, C+e’Ny
with a total density of states
Ny =3[NP(p)—NP(h)+N"(h)—N"(p)]. 7

It is instructive to examineC),® for an ideal ballistic wire.

For a perfecN—S structure,C,, is zero, since every charge
incident upon the conductor is perfectly Andreev reflected
and hence the net accumulated charge is zero. If the super-
conductor is driven into the normal state, the capacitalce

is C}'\‘L=Ce2N/(C+e2N) which for a ballistic wire reduces

to C)=C since typicallye?/C>1/N. ThusC),® for the hy-

brid structure can differ dramatically froml’)‘.

If we now wish to consider fluctuations in the charge then
we have to consider the Poisson equation for the fluctuating
charges® For the case that the voltages are held fitazto-
impedance external circlithis leads to an operator equa-
tion,

tions must be obtained by taking into account the Coulomb ®)

interaction and below we show how to obtain the true charge A

fluctuations from the fluctuations of the bare charges. where\is the operator of the bare charge fluctuations given
Given Egs(1)—(4) our next step is to consider the system by Eqg.(4) and the last term in Eq8) describes the screening

shown in Fig. 1 and to calculate the charge fluctuations in the the bare charge fluctuations. Solving 8. for U we can

mesoscopic region and hence deduce the current fluctuatior&press the charge fluctuatiofisin terms of the bare charge

n t.he gate. To do this It helps to first consider an.approad?luctuations? For the fluctuation spectrum of the charge this
which allows us to correctly calculate the chag@ in the gives

mesoscopic region when a voltage is applied across the sy
tem. The charge accumulated underneath the gate in the re-
gion Q can be expressed in two wa§s’ If we describe the
Coulomb interaction with the help of a geometrical capaci-
tanceC the incremental charge is simply related to the po-
tential variations in the conduct@iU and the gatesV, via
6Q=C(8U—6V,), assuming that the gate is macroscopic.
On the other hand, the chargi®) is also the sum of the
injected charges due to the variation of the contact potentials
(keeping the internal electrostatic potential fixeahd the
induced charges which are generated by the Coulomb inter-
action. Thus

O=cU=eN-e?N;U,

sQQ(w)z(1/2)c,iNg22(s

Y
XTHN, 5,(EE+ha)N ;a(sﬁ(E, E+fho)l,
)

Eﬁ deFya[;B(E,ﬁa))

N, 5 (EEEN=2 sgr(q”)f d* N7 5 (vy,I;EE'),
"B VIDN Q a’p

(10
PQ=CloU~oVy) Fyo(BEN=F, (E)N[1—f, (E)]+f,; (EN[1-f, (E)].
= 3[aPNP(p) 8up+q"N"(p) S+ "N"(h) S (12)

In the above the sum is over all normal conta¢i® and
degrees of freedomg. The Fermi functions ,,(E) are de-
fined such thatfypzfo(Ep—,uy) and fthfO(Eh-i-,u,y),
here E, is the energy of a particl¢hole) [a=p(h)] in

+gPNP(h) Sup—gPNP(p)gPouU,— gPNP(h)g"sU,
—q"N"(p)gPsU,—g"N"(h)g"sUy]. (5)

The first four terms in Eq(5) determine the charge injected w . hich i hemical . B |
into the conductor as a consequence of the variation of th SGILVOII".}/,fW Ich 1S atr? ¢ err&ma poter;]ualy, | o(E) IS | of
contact potentials. Similarly to the conceptual separation ofne Fermi ur:jctlo_n atlt S condensate chemical potential o
the electrostatic potential, we have here assumed that ea® Superconducting leadgg).
contact has separate electrochemical potenfiglsand ., Now we eyaluate Eg(Q) at equnlbrlum and zero tempera-
for electrons and holésln reality su,= — u,=pu=eV. The ~ Ure 1 leading order ift w<|A[. We find
second four terms in Eq5) determine the induced charges. 2

L =2C.R i
In the absence of superconductivity E&) reduces to the Saql(@) w ]
“Poisson equation” for charge variations in a normal with a charge relaxation resistance

(12
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h 2752 up Tr(NVa%N I’a%) 0.02 6.0

Rq=—2 2 . (13)
4e [Ns]

In the zero frequency limit, and at a temperatkiie<|A| the Ry | a0
charge fluctuations are given l:SbQ(w)=2CqukT with I
R, as given by Eq(13). If we bring the hybrid structure into 0.01 | 1 G
a nonequilibrium state by applying a bial8/|>kT between /
the normal reservoir and the superconductor, we find at zero o it A___]20
temperature in the low-frequency limit to leading order in e
e|V| for the system shown in Fig.2, | 077

—or2 . . . .
Sqo(@)=2C, Rye|V| (14 0900 10 gV 20 2.00°

with a nonequilibrium resistance
: ; FIG. 2. Ry® (thick solid ling and Ry (thick dashed ling in
h TNV N N N ) units ofh/e. GNS (thin solid line andG" (thin dashed lingis the
RV:4_ez [N ]2 : (15 conductance, in units @?/h, as a function oE—V, in units of
* fiwy, for a saddle QPC witl, / ,=2.
The resistanc®,, is a consequence of the charge fluctuations
which arise due to the shot noise of the transport state. The included, such that we can distinguish between particles
fluctuation spectra of the current at the gétén Fig. (1) are  and holes. We also note that we can writes/dE*
related to the charge fluctuation spectra E4®) and (14)  =(ds/d#")(d6*/dE"), whered6*/dE! is the particlghole)
via S (w)= wZSQQ(w). [A=p(h)] density of states divided by in the conductor in
To proceed further we follow BeenakReand express the region ). Making use of particle-hole symmetry we have
electron-hole scattering matrix of tié-S structure in terms  dé/dE=d6P/dEP=d6"/dE".
of the scattering matrix elements of the normal structure. For Using Eqgs.(13), (16)—(19) we now calculateRr; and find
simplicity we restrict our considerations here to normal
structures which are symmetric with respect to left and right 6 o2 4 n) 2
going carriers. The scattering matrix of the normal conductor h > [16RS+R,(4R,+1)?T21/(1+R,) 9E
is then given by a reflection matrix and a transmission pgNS_____ i

matrix t only. In terms ofr andt the electron-hole scattering ¢ 2€? s 4R (de,)\|?
matrix elements are - m JE
s1,1,(E)=rp(E)+ a?ty(E)rp(—E)My(E)t,(E), (16) (22)
» as comparet! to
51h1p(E):ae "tn(—E)Mp(E)tp(E), 17
de,\?
S1,1,(E)=Th(E) + a’th(E)rp(— E)Mp(E)th(~ E), - 2 lgE
(18 RN=—— ——— (23)
y 4 4e? de,\ ?
— I — —_
51,1,(E) = aet(E)Mp(E)ty(— E), (19 2|
wherea=exi{ —i arccosg/A)] and for a QPC attached to two normal leads, whe&geand R,
M (E)=[1— a?r (E)rp(—E)] %, (200 =1-T, are the transmission and reflection probabilities of
P P thenth quantum channel ang}, is the phase accumulated by
Mh(E):[l_QZrh(E)rp(_ E)]~ L (21 a carrier in thenth channel during transmission through the

_ , QPC. In Fig. 2 we ploR}® and Ry (the charge relaxation
In Egs.(16)—(21) we have given an indeg,hto r andtto  yegistance for a QPC attached to two normal lgaBier the

indic_at_e Whether a_car_rier ora hole is scattered since we have;.ameters we have chosen, we see that the difference be-
to distinguish derivatives with respect to the electron an weenR" and josis roughly a factor of 2. This arises from

Eole poten.t|||atl)s. Thrlgughout t?e retstlofhthle work presenteghe gifference between the contact resistance of a mesoscopic
ere we wi . e making use of particle-hole symmefirg., conductor in arN-S system compared to a4-N system*
E—0, s,=s}). ; ; NS N
P ’ . Having examinedR,~ andR, we now proceed to exam-
Now we wish to calculate the properties of the system.

NS £y
shown in Fig. 1. We choose to model a quantum point con:"® Ry”, finding

tacit, uséinzg a saddle point potentaV(x,y)=Vy+ %mwﬁyzl Ry(4R,+1)2T? ( den) 2
—sMmw;x*, and as in Ref. 9 we have evaluated the density of R

states semi-classically. We also take the Wentzel-Kramers- s Do (1+Ry)* dE

Brillouin (WKB) limit allowing us to make the following Rv :E AR3  [de.\ 12 (24)
transformatiort — [ d%r[d9/9q*UN(r)]—d/dE*. In the D —”<_“)

above transformation we have been careful to keep the index n (1+R,)?| dE
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FIG. 3. R)® (solid line) andRY (dashed ling in units ofh/e?,
as a function ofEg—V, in units of hwy, for a saddle QPC with
oyl =2,

as comparetio

s 1 (dTn)z
N h “n 4R,T,\ dE

Tl

|\ dE

the hybrid structure tends to (9/4)(e?) whereas the normal
stateR}® is completely suppressed at the channel threshold
due to the divergence of the semiclassical density of states.
In this work we have taken the first steps in considering
frequency-dependent charge fluctuations and noise calcula-
tions in mesoscopic normal superconducting hybrid systems.
To do this we have considered structures where the conden-
sate chemical potentials of any superconducting lead remains
the same and gates only see the normal regions of the con-
ductor. This allows us to consider oscillating voltages in the
normal reservoirs and calculate the systems response. We
have focused on thRCtime of such structures. THRCtime
is a fundamental dynamical quantity of electrical conductors.
Elsewhere we have shown that for normal mesoscopic con-
ductors theRC time also determines the dephasing rate of
Coulomb coupled structuré3We expect that such a relation
also holds for hybrid systems. As an example we considered
the most simple nontrivial example, a QPC attached to one
normal lead and one superconducting lead. We have given a
firm prediction that théRCtime and the fluctuations induced
into a gate differ markedly for aN-S structure and a normal
conductor. As usual, we assume perfect Andreev reflection at
the superconducting interface, whereas at real interfaces only
partial Andreev reflection might occur. Currents induced into
gates can be measurftWe believe that it is similarly pos-
sible to measure the current fluctuations at a gate.

for a QPC attached to two normal leads. In Fig. 3 we see Thijs work was supported by the Swiss National Science

both R} and Rl as a function ofEc—V,. At the channel
thresholdR,,=T,= 1/2 the nonequilibrium resistanﬂdS of
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