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Charge fluctuations in a quantum point contact attached to a superconducting lead

Andrew M. Martin, Thomas Gramespacher, and Markus Bu¨ttiker
Département de Physique The´orique, Universite´ de Gene`ve, CH-1211 Gene`ve 4, Switzerland

~Received 19 July 1999!

We show how to calculate the charge noise spectrum in a normal mesoscopic conductor, which is capaci-
tively coupled to a macroscopic gate, when this conductor is attached toL normal leads andM superconducting
leads, the only restriction being that the superconducting leads must be at the same chemical potential. We then
proceed to examine results for a quantum point contact~QPC! in a normal lead connecting to a superconductor.
Of interest is the fluctuating current in a gate capacitively coupled to a QPC. The results are compared with the
case when all leads are normal. We find a doubling of the equilibrium charge fluctuations and a large enhance-
ment ~.2! in the current noise spectrum to first order inueVu, when a channel in the QPC is opening.
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Theory and experimental measurements of the electr
transport properties of mesoscopic conductors, which ei
contain superconducting regions or are attached to super
ducting leads, have generated great interest. Of partic
interest are the noise properties of normal superconduc
interfaces. While many aspects of the low frequency-curr
noise spectra1 have been understood by generalizing the sc
tering approach2–6 of normal conductors, the fluctuations o
the charge have remained unexplored. We generalize
work done for normal mesoscopic conductors7–9 to systems
which contain superconducting leads. The only restrictio
are that there must be one or more normal leads, the su
conducting leads must all be at the same chemical poten
and any gates in the structure only see normal regions of
conductor. Having developed this technique, we shall c
sider one particular example shown in Fig. 1, a quant
point contact~QPC! attached to one normal lead, one sup
conducting lead and capacitively coupled, via the Coulo
interaction, to a macroscopic gate. We are interested in
charge fluctuations in the hybrid structure which can be m
sured by observing the current fluctuations at the gate
turns out that at equilibrium the current fluctuations are
termined by theRC-time constant. Thus our primary aim
to find the charge relaxation resistanceR and the capacitanc
C for hybrid structures. In the presence of transport, a re
tance RV , which reflects the shot noise1–3 of the hybrid
structure, appears.

Consider a mesoscopic conductor withL normal ideal
leads andM superconducting leads. The conductor can
described by a scattering matrix with elementssgadb

which

FIG. 1. Quantum point contact, attached to one normal and
superconducting lead, capacitively coupled to a gate.
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relate particle and hole amplitudes (a,b5p,h) incoming at
contactd to the outgoing amplitudes at contactg. Over a
region V the mesoscopic conductor is capacitively coup
to a gate. The current fluctuations induced into the gate
be found from the charge fluctuations of the mesosco
conductor.8,9 The investigation of the charge fluctuation
starts from the analysis of the bare charge fluctuations wh
are then screened to find the true charge fluctuations.8,9 For a
normal conductor the bare charge fluctuations are determ
by a density of states matrix which has dimensionsL* L. For
hybrid structure the matrix has dimensions 8* L* L: Any
scattering channel, independent of whether the incoming
outgoing channels are electron- or hole-like, can contrib
to the electron density at a pointr inside the conductor. Thus
to express the density in terms of the scattering matrix
quires a conceptual trick: It is useful to imagine that there
two electrostatic potentials,Up andUh, which each act sepa
rately on the electrons and holes.10 The matrix which gov-
erns the charge fluctuations can then be found by testing
scattering matrix elements with regard to small variations
the electron and hole potentials, generalizing Refs. 8 an
This procedure gives the following density-of-stat
elements10

N gadb

h ~nl ,r !5
21

4p i
Fsnlga

† @E,UI ~r !#
]snldb

@E,UI ~r !#

qh]Uh~r !

2snlga
@E,UI ~r !#

]snldb

† @E,UI ~r !#

qh]Uh~r !
G , ~1!

where the labelsn, g, andd denote contacts (1 . . .L), a, b,
l, andh denote the electron/hole degrees of freedom (p/h)
andqp5e52qh. The functional derivatives are taken at th
equilibrium electrostatic potentialUp5Uh5Ueq . To give an
example,N 1p2p

h (1h ,r ) is the hole density associated wit
two electron current amplitudes incident from contacts 1 a
2 and a reflected outgoing hole amplitude in contact 1. W
the help of these basic expressions we can now find both
average density of states as well as the fluctuations. The
density of states of a regionV of the conductor isNh

5Nh(p)1Nh(h), where
e
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Nh~a!5(
ngl

E
V

d3r Tr@N gaga

h ~nl ,r !# ~2!

and the particle density of states
Np5Np(p)1Np(h) with

Np~a!5(
ngl

E
V

d3r Tr@N gaga

p ~nl,r !#. ~3!

The trace is over open quantum channels.Na(b) is the in-
jectivity of particles ~holes! @b5p(h)#, from all contacts
into the conductor, given a change in the particle~hole! po-
tential @a5p(h)#.

The fluctuations of the bare charge in a regionV can be
found from the charge operatoreN̂ given by

eN̂~v!5(
ga
db

(
hnl

E
V

d3rE dEâga

† ~E!qh

3N gadb

h ~nl ,r ;E,E1\v!âdb
~E1\v!, ~4!

where the zero-frequency limit ofN gadb

h (nl ,r ;E,E1\v) is

given by Eq.~1!. In Eq. ~4!, âga
† (E) creates an incoming

electron/hole (a5p/h) in lead g. The true charge fluctua
tions must be obtained by taking into account the Coulo
interaction and below we show how to obtain the true cha
fluctuations from the fluctuations of the bare charges.

Given Eqs.~1!–~4! our next step is to consider the syste
shown in Fig. 1 and to calculate the charge fluctuations in
mesoscopic region and hence deduce the current fluctua
in the gate. To do this it helps to first consider an appro
which allows us to correctly calculate the chargedQ in the
mesoscopic region when a voltage is applied across the
tem. The charge accumulated underneath the gate in th
gion V can be expressed in two ways:7–9 If we describe the
Coulomb interaction with the help of a geometrical capa
tanceC the incremental charge is simply related to the p
tential variations in the conductordU and the gatedVg via
dQ5C(dU2dVg), assuming that the gate is macroscop
On the other hand, the chargedQ is also the sum of the
injected charges due to the variation of the contact poten
~keeping the internal electrostatic potential fixed! and the
induced charges which are generated by the Coulomb in
action. Thus

dQ5C~dU2dVg!

5 1
2 @qpNp~p!dmp1qhNh~p!dmp1qhNh~h!dmh

1qpNp~h!dmh2qpNp~p!qpdUp2qpNp~h!qhdUh

2qhNh~p!qpdUp2qhNh~h!qhdUh#. ~5!

The first four terms in Eq.~5! determine the charge injecte
into the conductor as a consequence of the variation of
contact potentials. Similarly to the conceptual separation
the electrostatic potential, we have here assumed that
contact has separate electrochemical potentialsmp and mh
for electrons and holes.4 In reality mp52mh5m5eV. The
second four terms in Eq.~5! determine the induced charge
In the absence of superconductivity Eq.~5! reduces to the
‘‘Poisson equation’’ for charge variations in a norm
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conductor:7,9 We have Np(h)5Nh(p)50 and N[Np(p)
5Nh(h). Going back to Eq.~5! we can solve it fordU and
can use this solution to determine the electrochemical
pacitance of the hybrid structure vis-a`-vis the gate. We find

Cm
NS[

dQ

dV
[2

dQ

dVg
5

Ce2NS

C1e2NS
~6!

with a total density of states

NS5 1
2 @Np~p!2Np~h!1Nh~h!2Nh~p!#. ~7!

It is instructive to examineCm
NS for an ideal ballistic wire.

For a perfectN2S structure,Cm is zero, since every charg
incident upon the conductor is perfectly Andreev reflec
and hence the net accumulated charge is zero. If the su
conductor is driven into the normal state, the capacitance7,11

is Cm
N5Ce2N/(C1e2N) which for a ballistic wire reduces

to Cm
N5C since typicallye2/C@1/N. ThusCm

NS for the hy-
brid structure can differ dramatically fromCm

N .
If we now wish to consider fluctuations in the charge th

we have to consider the Poisson equation for the fluctua
charges.9,8 For the case that the voltages are held fixed~zero-
impedance external circuit! this leads to an operator equa
tion,

Q̂5CÛ5eN̂2e2NSÛ, ~8!

whereN̂ is the operator of the bare charge fluctuations giv
by Eq.~4! and the last term in Eq.~8! describes the screenin
of the bare charge fluctuations. Solving Eq.~8! for Û we can
express the charge fluctuationsQ̂ in terms of the bare charg
fluctuations.9 For the fluctuation spectrum of the charge th
gives

SQQ~v!5~1/2!Cm
2 NS

22(
gd

(
ab

E dEFgadb
~E,\v!

3Tr@Ngadb
~E,E1\v!N gadb

† ~E,E1\v!#,

~9!

where

Ngadb
~E,E8!5(

hnl
sgn~qh!E

V
d3rN gadb

h ~nl ,r ;E,E8!,

~10!

Fgadb
~E,E8!5 f ga

~E!@12 f db
~E8!#1 f db

~E8!@12 f ga
~E!#.

~11!

In the above the sum is over all normal contactsgd and
degrees of freedomab. The Fermi functionsf ga(E) are de-
fined such that f gp

5 f 0(Ep2mg) and f gh
5 f 0(Eh1mg),

where Ea is the energy of a particle~hole! @a5p(h)# in
reservoirg, which is at a chemical potentialmg , f 0(E) is
the Fermi function at the condensate chemical potentia
the superconducting leads (m0).

Now we evaluate Eq.~9! at equilibrium and zero tempera
ture, to leading order in\v!uDu. We find

SQQ~v!52Cm
2 Rq\uvu ~12!

with a charge relaxation resistance
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Rq5
h

4e2

(gd(ab Tr~Ngadb
N gadb

† !

@NS#2 . ~13!

In the zero frequency limit, and at a temperaturekT!uDu the
charge fluctuations are given bySQQ(v)52Cm

2 RqkT with
Rq as given by Eq.~13!. If we bring the hybrid structure into
a nonequilibrium state by applying a biaseuVu@kT between
the normal reservoir and the superconductor, we find at z
temperature in the low-frequency limit to leading order
euVu for the system shown in Fig. 1,

SQQ~v!52Cm
2 RVeuVu ~14!

with a nonequilibrium resistance

RV5
h

4e2

Tr~N1p1h
N 1p1h

† 1N1h1p
N 1h1p

† !

@NS#2 . ~15!

The resistanceRV is a consequence of the charge fluctuatio
which arise due to the shot noise of the transport state.
fluctuation spectra of the current at the gateG in Fig. ~1! are
related to the charge fluctuation spectra Eqs.~12! and ~14!
via SII (v)5v2SQQ(v).

To proceed further we follow Beenakker5 and express the
electron-hole scattering matrix of theN-S structure in terms
of the scattering matrix elements of the normal structure.
simplicity we restrict our considerations here to norm
structures which are symmetric with respect to left and ri
going carriers. The scattering matrix of the normal conduc
is then given by a reflection matrixr and a transmission
matrix t only. In terms ofr andt the electron-hole scatterin
matrix elements are

s1p1p
~E!5r p~E!1a2tp~E!r h~2E!M p~E!tp~E!, ~16!

s1h1p
~E!5ae2 ifth~2E!M p~E!tp~E!, ~17!

s1h1h
~E!5r h~E!1a2th~E!r p~2E!Mh~E!th~2E!,

~18!

s1p1h
~E!5aeifth~E!Mh~E!tp~2E!, ~19!

wherea5exp@2i arccos(E/D)# and

M p~E!5@12a2r p~E!r h~2E!#21, ~20!

Mh~E!5@12a2r h~E!r p~2E!#21. ~21!

In Eqs. ~16!–~21! we have given an indexp,h to r and t to
indicate whether a carrier or a hole is scattered since we h
to distinguish derivatives with respect to the electron a
hole potentials. Throughout the rest of the work presen
here we will be making use of particle-hole symmetry~i.e.,
E→0, sp5sh* ).

Now we wish to calculate the properties of the syst
shown in Fig. 1. We choose to model a quantum point c
tact, using a saddle point potential12 V(x,y)5V01 1

2 mvy
2y2

2 1
2 mvx

2x2, and as in Ref. 9 we have evaluated the density
states semi-classically. We also take the Wentzel-Kram
Brillouin ~WKB! limit allowing us to make the following
transformation:8 2*Vd3r @]/]qlUl(r )#→d/dEl. In the
above transformation we have been careful to keep the in
ro

s
he

r
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f
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l included, such that we can distinguish between partic
and holes. We also note that we can writeds/dEl

5(ds/dul)(dul/dEl), wheredul/dEl is the particle~hole!
@l5p(h)# density of states divided byp in the conductor in
region V. Making use of particle-hole symmetry we hav
du/dE5dup/dEp5duh/dEh.

Using Eqs.~13!, ~16!–~19! we now calculateRq and find

Rq
NS5

h

2e2

(
n

@16Rn
61Rn~4Rn11!2Tn

2#/~11Rn!4 S dun

dE
D 2

F(
n

4Rn
3

~11Rn!2 S dun

dE
D G 2

~22!

as compared9,13 to

Rq
N5

h

4e2

(
n

S dun

dE
D 2

F(
n

S dun

dE
D G2 ~23!

for a QPC attached to two normal leads, whereTn and Rn
512Tn are the transmission and reflection probabilities
thenth quantum channel andun is the phase accumulated b
a carrier in thenth channel during transmission through th
QPC. In Fig. 2 we plotRq

NS and Rq
N ~the charge relaxation

resistance for a QPC attached to two normal leads!. For the
parameters we have chosen, we see that the difference
tweenRq

N andRq
NS is roughly a factor of 2. This arises from

the difference between the contact resistance of a mesosc
conductor in anN-S system compared to anN-N system.14

Having examinedRq
NS andRq

N we now proceed to exam
ine RV

NS, finding

RV
NS5

h

2e2

(
n

Rn~4Rn11!2Tn
2

~11Rn!4 S dun

dE
D 2

F(
n

4Rn
3

~11Rn!2 S dun

dE
D G 2 ~24!

FIG. 2. Rq
NS ~thick solid line! and Rq

N ~thick dashed line!, in

units ofh/e2. GNS ~thin solid line! andGN ~thin dashed line! is the
conductance, in units ofe2/h, as a function ofEF2V0 in units of
\vy , for a saddle QPC withvy /vx52.
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as compared9 to

RV
N5

h

e2

(
n

1

4RnTn
S dTn

dE
D 2

F(
n

S dun

dE
D G2 ~25!

for a QPC attached to two normal leads. In Fig. 3 we
both RV

NS and RV
N as a function ofEF2V0 . At the channel

thresholdRn5Tn51/2 the nonequilibrium resistanceRV
NS of

FIG. 3. RV
NS ~solid line! andRV

N ~dashed line!, in units ofh/e2,
as a function ofEF2V0 in units of \vy , for a saddle QPC with
vy /vx52.
ns
e

the hybrid structure tends to (9/4)(h/e2) whereas the norma
stateRV

NS is completely suppressed at the channel thresh
due to the divergence of the semiclassical density of sta

In this work we have taken the first steps in consider
frequency-dependent charge fluctuations and noise calc
tions in mesoscopic normal superconducting hybrid syste
To do this we have considered structures where the con
sate chemical potentials of any superconducting lead rem
the same and gates only see the normal regions of the
ductor. This allows us to consider oscillating voltages in t
normal reservoirs and calculate the systems response.
have focused on theRC time of such structures. TheRC time
is a fundamental dynamical quantity of electrical conducto
Elsewhere we have shown that for normal mesoscopic c
ductors theRC time also determines the dephasing rate
Coulomb coupled structures.15 We expect that such a relatio
also holds for hybrid systems. As an example we conside
the most simple nontrivial example, a QPC attached to
normal lead and one superconducting lead. We have giv
firm prediction that theRC time and the fluctuations induce
into a gate differ markedly for anN-S structure and a norma
conductor. As usual, we assume perfect Andreev reflectio
the superconducting interface, whereas at real interfaces
partial Andreev reflection might occur. Currents induced in
gates can be measured.16 We believe that it is similarly pos-
sible to measure the current fluctuations at a gate.

This work was supported by the Swiss National Scien
Foundation and by the TMR network Dynamics of Nan
structures.
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8M. Büttiker, J. Math. Phys.37, 4793~1996!.
9M. H. Pedersen, S. A. van Langen, and M. Bu¨ttiker, Phys. Rev. B
.

57, 1838~1998!.
10T. Gramespacher and M. Bu¨ttiker, cond-mat/9908469~unpub-

lished!.
11B. Wang, X. Zhao, J. Wang, H. Guo, Appl. Phys. Lett.74, 2887

~1999!; H. Wei, N. Zhu, J. Wang, and H. Guo, Phys. Rev. B56,
9657 ~1997!.
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