5,647 research outputs found

    Eurasian beaver activity increases water storage, attenuates flow and mitigates diffuse pollution from intensively-managed grasslands

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Beavers are the archetypal keystone species, which can profoundly alter ecosystem structure and function through their ecosystem engineering activity, most notably the building of dams. This can have a major impact upon water resource management, flow regimes and water quality. Previous research has predominantly focused on the activities of North American beaver (Castor canadensis) located in very different environments, to the intensive lowland agricultural landscapes of the United Kingdom and elsewhere in Europe. Two Eurasian beavers (Castor fiber) were introduced to a wooded site, situated on a first order tributary, draining from intensively managed grassland. The site was monitored to understand impacts upon water storage, flow regimes and water quality. Results indicated that beaver activity, primarily via the creation of 13 dams, has increased water storage within the site (holding ca. 1000m(3) in beaver ponds) and beavers were likely to have had a significant flow attenuation impact, as determined from peak discharges (mean 30±19% reduction), total discharges (mean 34±9% reduction) and peak rainfall to peak discharge lag times (mean 29±21% increase) during storm events. Event monitoring of water entering and leaving the site showed lower concentrations of suspended sediment, nitrogen and phosphate leaving the site (e.g. for suspended sediment; average entering site: 112±72mgl(-1), average leaving site: 39±37mgl(-1)). Combined with attenuated flows, this resulted in lower diffuse pollutant loads in water downstream. Conversely, dissolved organic carbon concentrations and loads downstream were higher. These observed changes are argued to be directly attributable to beaver activity at the site which has created a diverse wetland environment, reducing downstream hydrological connectivity. Results have important implications for beaver reintroduction programs which may provide nature based solutions to the catchment-scale water resource management issues that are faced in agricultural landscapes.The Devon Beaver Project is led by Devon Wildlife Trust, monitored by the University of Exeter, and funded by Devon Wildlife Trust and Westland Countryside Stewards

    Genotypic variation in phosphorus efficiency between wheat cultivars grown under greenhouse and field conditions

    Get PDF
    Phosphorus (P) efficiency (relative growth), which is described as the ratio of shoot dry matter or grain yield at deficient P supply to that obtained under adequate P supply, was compared in 25 winter wheat cultivars grown under greenhouse and field conditions with low and adequate P levels in a P-deficient calcareous soil. Adequate P supply resulted in significant increases in shoot dry weight and grain yield under both experimental conditions. In the greenhouse experiment, the increases in shoot dry weight under adequate P supply (80 mg kg(-1)) were from 0% (cv: C-1252) to 34% (cv: Dagdas). Under field conditions, the cultivars showed much greater variation in their response to adequate P supply (60 kg ha(-1)): the increases in shoot dry weight and grain yield with adequate P supply were between -2% (cv: Sivas-111/33) and 25% (cv: Kirac-66) for shoot dry matter production at the heading stage and between 0% (cv: Kirkpinar-79) and 76% (cv: Kate A-1) for grain yield at maturity. Almost all cultivars behaved totally different in their response to P deficiency under greenhouse and field conditions. Phosphorus efficiency ratios (relative growth) under greenhouse conditions did not correlate with the P efficiency ratios under field conditions. In general, durum wheat cultivars were found to be more P efficient compared with bread wheat cultivars. The results of this study indicated that there is wide variation in tolerance to P deficiency among wheat cultivars that can be exploited in breeding new wheat cultivars for high P deficiency tolerance. The results also demonstrated that P efficiency was expressed differently among the wheat cultivars when grown under greenhouse and field conditions and, therefore, special attention should be paid to growth conditions in screening wheat for P efficiency

    A path-oriented encoding evolutionary algorithm for network coding resource minimization

    Get PDF
    Network coding is an emerging telecommunication technique, where any intermediate node is allowed to recombine incoming data if necessary. This technique helps to increase the throughput, however, very likely at the cost of huge amount of computational overhead, due to the packet recombination performed (ie coding operations). Hence, it is of practical importance to reduce coding operations while retaining the benefits that network coding brings to us. In this paper, we propose a novel evolutionary algorithm (EA) to minimize the amount of coding operations involved. Different from the state-of-the-art EAs which all use binary encodings for the problem, our EA is based on path-oriented encoding. In this new encoding scheme, each chromosome is represented by a union of paths originating from the source and terminating at one of the receivers. Employing path-oriented encoding leads to a search space where all solutions are feasible, which fundamentally facilitates more efficient search of EAs. Based on the new encoding, we develop three basic operators, that is, initialization, crossover and mutation. In addition, we design a local search operator to improve the solution quality and hence the performance of our EA. The simulation results demonstrate that our EA significantly outperforms the state-of-the-art algorithms in terms of global exploration and computational time

    CAR-Net: Clairvoyant Attentive Recurrent Network

    Full text link
    We present an interpretable framework for path prediction that leverages dependencies between agents' behaviors and their spatial navigation environment. We exploit two sources of information: the past motion trajectory of the agent of interest and a wide top-view image of the navigation scene. We propose a Clairvoyant Attentive Recurrent Network (CAR-Net) that learns where to look in a large image of the scene when solving the path prediction task. Our method can attend to any area, or combination of areas, within the raw image (e.g., road intersections) when predicting the trajectory of the agent. This allows us to visualize fine-grained semantic elements of navigation scenes that influence the prediction of trajectories. To study the impact of space on agents' trajectories, we build a new dataset made of top-view images of hundreds of scenes (Formula One racing tracks) where agents' behaviors are heavily influenced by known areas in the images (e.g., upcoming turns). CAR-Net successfully attends to these salient regions. Additionally, CAR-Net reaches state-of-the-art accuracy on the standard trajectory forecasting benchmark, Stanford Drone Dataset (SDD). Finally, we show CAR-Net's ability to generalize to unseen scenes.Comment: The 2nd and 3rd authors contributed equall

    Beaver: Nature's ecosystem engineers

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this record. Beavers have the ability to modify ecosystems profoundly to meet their ecological needs, with significant associated hydrological, geomorphological, ecological, and societal impacts. To bring together understanding of the role that beavers may play in the management of water resources, freshwater, and terrestrial ecosystems, this article reviews the state-of-the-art scientific understanding of the beaver as the quintessential ecosystem engineer. This review has a European focus but examines key research considering both Castor fiber—the Eurasian beaver and Castor canadensis—its North American counterpart. In recent decades species reintroductions across Europe, concurrent with natural expansion of refugia populations has led to the return of C. fiber to much of its European range with recent reviews estimating that the C. fiber population in Europe numbers over 1.5 million individuals. As such, there is an increasing need for understanding of the impacts of beaver in intensively populated and managed, contemporary European landscapes. This review summarizes how beaver impact: (a) ecosystem structure and geomorphology, (b) hydrology and water resources, (c) water quality, (d) freshwater ecology, and (e) humans and society. It concludes by examining future considerations that may need to be resolved as beavers further expand in the northern hemisphere with an emphasis upon the ecosystem services that they can provide and the associated management that will be necessary to maximize the benefits and minimize conflicts.Natural Environment Research Council (NERC)Wellcome TrustDevon Wildlife TrustPlymouth City CouncilCornwall Wildlife TrustUniversity of Exete

    Comparison between electrically-evoked and voluntary wrist movements on sensorimotor and prefrontal cortical activation: A multi-channel time domain functional NIRS study

    Get PDF
    Neuromuscular electrical stimulation (NMES) has been consistently demonstrated to improve skeletal muscle function in neurological populations with movement disorders, such as poststroke and incomplete spinal cord injury (Vanderthommen and Duchateau, 2007). Recent research has documented that rapid, supraspinal central nervous system reorganisation/neuroplastic mechanisms are also implicated during NMES (Chipchase et al., 2011). Functional neuroimaging studies have shown NMES to activate a network of sub-cortical and cortical brain regions, including the sensorimotor (SMC) and prefrontal (PFC) cortex (Blickenstorfer et al., 2009; Han et al., 2003; Muthalib et al., 2012). A relationship between increase in SMC activation with increasing NMES current intensity up to motor threshold has been previously reported using functional MRI (Smith et al., 2003). However, since clinical neurorehabilitation programmes commonly utilise NMES current intensities above the motor threshold and up to the maximum tolerated current intensity (MTI), limited research has determined the cortical correlates of increasing NMES current intensity at or above MTI (Muthalib et al., 2012). In our previous study (Muthalib et al., 2012), we assessed contralateral PFC activation using 1-channel functional near infrared spectroscopy (fNIRS) during NMES of the elbow flexors by increasing current intensity from motor threshold to greater than MTI and showed a linear relationship between NMES current intensity and the level of PFC activation. However, the relationship between NMES current intensity and activation of the motor cortical network, including SMC and PFC, has not been clarified. Moreover, it is of scientific and clinical relevance to know how NMES affects the central nervous system, especially in comparison to voluntary (VOL) muscle activation. Therefore, the aim of this study was to utilise multi-channel time domain fNIRS to compare SMC and PFC activation between VOL and NMESevoked wrist extension movements

    Global Health Estimates: Stronger Collaboration Needed with Low- and Middle-Income Countries

    Get PDF
    Osman Sankoh argues for much stronger collaboration between generators of global health estimates, and individuals and organizations working at the country level, as part of a PLoS Medicine cluster of articles on global health estimates

    Gravitomagnetic corrections to the lensing deflection angle for spiral galaxy models

    Full text link
    We investigate the effects of the gravitomagnetic corrections to the usual gravitational lens quantities for a specific lensing mass distribution modelled after spiral galaxies. An exponential disk is embedded into two different spherical halo models where disk and haloes parameters are fixed according to the observed mass to light ratios, galaxy magnitudes and rotation curves. The general expressions for the lensing deflection angle are given also taking into account the orientation of the galaxy disk plane with respect to the lens plane. It is found that the gravitomagnetic term changes the deflection angle by a typical amount of the order of ten microarcseconds.Comment: 7 pages, 2 figures, accepted for publication on MNRA
    • …
    corecore