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Abstract:

Network coding is an emerging telecommunication technique, where any intermediate atho\wed
to recombine incoming data if necessary. This technique helpwrease the throughput, however, very
likely at the cost of huge amount of computational overhead, due to the packet recombinatioregdife.
coding operations). Hence, it is of practical importance to reduce codingtioperwhile retaining the
benefits that network coding brings to us.

In this paper, we propose a novel evolutionary algorithm (EA) to minimize the arobuuiding
operations involved. Different from the state-of-the-art EAs which albirsay encodings for the problem,
our EA is based on path-oriented encoding. Ia tlew encoding scheme, each chromosome is represented
by a union of paths originating from the source and terminating at one ofdbké&vars. Employing
path-oriented encoding leads to a search space where all solutions are fedsitiiefundamentally
facilitates more efficient search of EAs. Based on the new encoding, we ddvelefasic operators, i.e.
initialization, crossover and mutation. In addition, we design a local search operatqrove the solution
guality and hence the performance of our EA. The simulation results demonstrate tBatsignificantly
outperforms the state-of-the-art algorithms in terms of global exploration and cdomaltiine.
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1. Introduction

Network coding is a new routing paradigm, where each intermediate node is nabtmntp forward
the incoming data but also allowed to mathematically recombine (code) them ifargo@shlswede et al,
2000; Li et al, 2003). In essence, by introducing extra computations at intermextlate network coding
can efficiently make use of the bandwidth resource of a network and accommodatafararation flows
than traditional routing (Li et al, 2003). Multicast is a routing schéameneto-many data transmission,
where the same information is delivered from a sourcedet of receivers simultaneously (Miller, 1998).
When applied in multicast, network coding can always guarantee a theoretically anaioughput
(Ahlswede et al, 2000; Li et al, 2003). However, performing coding operations will consxitree
computational overhead and buffers. Hence, a natural concern is how to route the dtie fouance to all
receivers at the expected data rate while minimizing the number of coding operations necessaniggerfo

The above problem is NP-hard (Kim et al, 2006) and a number of evolutionarytafgo(EAS) have
been proposed (see Section 2.2), where all of them adopt binary encodings to represergsomes (see
Section 3.2). However, it is observed in this paper that a major weakness of these encodings igénahthe s
space will include a large proportion of infeasible solutions. Thesa@swuwdre potential barriers during the
search and may significantly deteriorate the performance of EAs. This motivatmesnusstigate a more
suitable encoding approach for EAs to effectively address the problem concerned.

In telecommunications, EAs are widely used as an optimizer to select approputate witln limited
time. When designing EAs, path-oriented encoding is a direct anchihalaice since routing itdeis to
select paths in a network along which the traffic is delivered. In the litergiatteoriented encoding has
been adopted by EAs for solving shortest path routing and multicast routiblgms. A number of GAs
(Ahn and Ramakrishna, 2002; Cheng and Yang, 2010; Yang et al, 2010a) are employed te find th
cost-optimal path connecting the given source and receiver. Each chromosome is replgsentmth
containing a string of IDs of nodes through which the path passes. Also, EAs are useduotdeast-cost
spanning trees, where each chromosome is represented by a set of paths from the soeaiger so(Ralmer
and Kershenbaum, 1994; Siregar et al, 2005; Oh et al, 2006; Cheng and Yang, 2008, 2@il@b)toSi
construct a spanning tree, network coding based multicast (NCM) finds a subdraphowns multiple
paths. Hence, path-oriented encoding could be a potential choice as the chromosome taprdsetiia
network coding resource minimization problem. However, to our knowledge noateseahe literature
concerns path-oriented encoding for the problem concerned.

In this paper, we propose ai\ kising path-oriented encoding to address the network coding resource
minimization problem. In this EA, a chromosome is comprised of d basic Bhl,(where d is the number
of receivers. Each basic unit consists of a set of paths connecting the source and a certajranecdiveot
share any common link. The number of paths in each basic unit is the same, i.e. the dat&eadevRlop
three genetic operators, i.e. initialization, crossover and mutation bas#te qroposed path-oriented
encoding. In the initialization, an allelic BU paslgenerated for each receiver. Then, each chromosome
the population is created by randomly selecting one BU for each receiver. To explore the search space we use
a single-point crossover which operates upon BUs without damaging the structureRif anymutation, a
max-flow algorithm is carried out on a BU of a chromosome, chosen base@& onuthtion probability
which is associated with the number of receiversy dddition to these genetic operators, we also develop a
problem-specific local search operator to improve solution quality and avoid preéymdixperimental



results show that the path-oriented encoding EA is capable of finding optimabselim most of the test
instances within a very short time, and the propos@dobtperformsthe existingEAs due to the new
encoding and the well-designed associated operators.

2. Problem For mulation and Related Wor k

2.1 Problem Formulation

In this paper, a communication netwaskmodeled as a directed graph G = (V, E), where V and E are
the node set and link set, respectively. Assume each difikie with a unit capacity. Only integer flows are
allowed in G, hence a link is either idle or occupied by a flow of ate (Kim et al, 2007a, 2007b)
network coding based multicast (NCM) request can be defined as a saMf@xgects to send the same
data to a number of receivers T 3, {t. .t} cV at rate R, where R is an integer (Xing and Qu, 2012, 2013).
Each receiverd T can receive the data sent from the source aRéfém et al, 2007a, 2007b).

Given a NCM request, the task is to find a connected subgraph in G to sumpontlticast with
network coding (Xing and Qu, 2012, 2013). This subgraph is cH&d subgraph (denoted byw&y). In a
NCM subgraph, there are R link-disjoint paths connecting s and each receivem@roadi is a node that
performs coding operationan outgoing link of a coding node is called a coding link if the data senteout
this link are a combination of the data received by the coding nddenetwork G, a non-receiver
intermediate node with multiple incoming links is referred to as a merging(Kaleet al, 2007a, 2007b).
Only merging nodes are possible to become coding nodes. The number of coding links is used tohestimate t
amount of coding operations performed during the data transmission (Langberg et al, N6G6)
descriptions can be foural Xing and Qu (2012). The following lists some notations.

Mg: the set of merging nodes in G, whererVg is an arbitrary merging node in G.

L the set of outgoing links of merging node m, wheeels, is an arbitrary outgoing link of node m.

oe. abinary variable associated with each link &, Ym € Mg. g = 1 if link eis a coding link;ge = 0
otherwise.

D(Gnew): the number of coding links in the NCM subgraph.

R(s, 1): the data rate between s apith the NCM subgraph.

pi(s, 1) : the i-th link-disjoint path from ® t in Gyem, | = 1,2,..,R.

The network coding resource minimization problendefined as to find a NCM subgraph with the
number of coding links minimized and the data rate R satisfied, shown as follows:

Minimize:

OGyom) = 2, ( Zae] (1)

vmeMg \ Veel ,

Subiject to:
Rs, ) =R,VieT (2

Objective (1) defines the optimization problem as to minimize the numbedioigciinks; Constraint (2)
defines the achievable rate from s and each receiver is exactly R in thesti\igké&ph, also indicating that
there are R link-disjoint paths between the source and each receiver.



2.2 Related Wor k

By far, a number of EAs have been proposed for solving the minimization problers. HAssan be
classified into four categories, i.e. genetic algorithms (GAs), estimatidistoibution algorithms (EDAS),
EAs with efficiency enhancement techniques, and hybridized EAs.

Kim et al developed several GAs to minimize the involved network coding resdiredirst GA was
only applicableo acyclic networks (Kim et al, 2006). Then, a distributed GA was dedifpr both acyclic
and cyclic networks, where a graph decomposition method (see Section 3.1) was propegethtotarget
problem to an EA framework (Kim et al, 2007a). Besides, two binary encoding approachibe binary
link state (BLS) and the block transmission state (BTS), and their associatetbopwere evaluated (Kim
et al, 2007b) (see Section 3.2).

EDAs have also been used to solve the problem. They maintain one or more pyobedtitirs, rather
than a population of explicit solutions. The probability vectors, when sampledgemwi#irate promising
solutions with increasingly higher probabilities during the evolution. So fantgmmainspired evolutionary
algorithm (QEAs) and population based incremental learning algorithm (PBIL) beere developed to
optimize the problem concerned (Xing et al, 2010; Ji and Xing, 2011; Xing and Qu, 2011a, 2011b).

In addition, Ahn (2011) and Luong et al (2012) studied the minimum-cost network codingnprobl
using evolutionary approaches, where entropy-based evaluation relaxation techniques were irisoduced
EAs in order to reduce the computational cost incurred during the evolution. Bygmese of the inherent
randomness feature of the individuals, the proposed EAs can rapidly recognizsimgasniutions with
much fewer individuals to be evaluated.

Xing and Qu (2012) proposed a hybridized EA. They designed a local search procedure and
incorporated it into the EA framework. Strong global exploration and local exploitapabitities can both
be obtained during the evolution.

Note that all the EAs above adopt binary encodings to represent chromosomes. Howseer, the
encodings have their intrinsic drawback as the search space may contain manlylensefigions which
would significantly increase the difficulty of tackling the problem.slthence worth designing a more
appropriate encoding scheme for EAs to effectively address the problem.

3. The Proposed Evolutionary Algorithm

We first review the graph decomposition method based on which the path-oriented encdekingnisd.
We then review the existing encodings for network coding resource minimizatiomeileinary link state
(BLS) and the block transmission state (BTS). After that, we describe the nedirgncits associated
operators and the overall procedure of the proposed EA.

3.1 The Graph Decomposition M ethod

The graph decomposition method is a means of explicitly showing how information flows pasggh thr
merging nodes in network G. This method decomposes each merging node into a niamkéianf nodes,
as described below (Kim et al, 2007a, 2007b).

Suppose merging node i owhgi) incoming links and Out(i) outgoing links. This node is decomposed



into two node setdn(i) incoming auxiliary hodes and Out(i) outgoing auxiliary nodes. Each inconmikg li
of i is redirected to the corresponding incoming auxiliary node and each outgoingiliskedirected to the
corresponding outgoing auxiliary node. In addition, an auxiliary link is inserte@geéptarbitrary pair of
incoming and outgoing auxiliary nodes. Fig.1 shows an example of the graph decompositiongifiake or
graph with source s and receiverand ¢ is shown in Fig.1(a), wherq and y are merging nodes. Fig.)(b
illustrates the decomposed graph, where eight auxiliary links are insanmeging all possible routes that
information flows may pass throughand v.

(a) Original graph. jlwlecomposed graph.

Fig.1 An example of graph decomposition.

3.2TheBLSand BTS Encodings

BLS and BTS are the only two existing encoding approaches in the literattine fmoblem concerned
(Kim et al, 2007a, 2007b). They are based on the graph decomposition method. For an arbitriaiy m
node withIin incoming links and Out outgoing links, there #meauxiliary links heading to each outgoing
auxiliary node after graph decomposition, e.g. links>sw; and y—»w; connect wand links u—w, and
U,—W, connect w, as shown in Fig.1(b). Each auxiliary link can be either active or inactigaating
whether the link allows flow to pass.

Assume there are OAN outgoing auxiliary nodes in the decomposed gsapi&e OAN is an integer.
In BLS, a chromosome (solutiory consists of a number of binary arrays ib= 1, 2,..., OAN, each
determining the states of the auxiliary links heading to a certain outgoiiigitguxode in G. In BTS, the
chromosome representation is the same as that in the BLS encoding. However, forraadh ia
BTS-based chromosome, once there are at least’sno Iy, the remaining & in b are replaced with’$.

Using BLS or BTS encoding has two disadvantages. First, the search space @notmsglerable
amount of infeasible solutions (see section 4.2). As aforementioned, how flowfi@aserging nodes is
determined by the states of all incoming auxiliary links @ & many of the incoming auxiliary links are
inactive (i.e. many 8 in chromosome), an infeasible solution is very likely to be resulted. Infeasible
solutions are barriers that disconnect feasible regions in the searclaspgadecrease the search efficiency
of EAs. Second, the evaluation procedure is complex and indirect, requiring a number of processing steps, i.e.
chromosome&X — Gp — Gyem — f(X). Meanwhile, the computational overhead involved in the step>G
Gnew is quite high since the am-flow between the source and each receivell tneeds to be computed. The



two drawbacks motivate us to devise a more efficient encoding to representutiensdio the problem
concerned.

3.3 The Path-Oriented Encoding and Evaluation

In this paper, we adapt the path-oriented encoding within our proposed EA. Each chromososte consi
of a set of paths originating from the source and terminating at one @fctigars. Each path is encodsd
a string of positive integers representing the IDs of nodes through which theadaés. The set of paths is
classified into d subsets, i.e. d basic unit (BU), where patB&Jinonnect to the same receiver and they do
not share any common link (i.e. they are link-disjoint). Besidesg tlre R paths in each BU, where R is the
expected data rate. Each chromosome is feasible since each BU of the chromosometisatdsdiasrate
requirement. Each BU can be easily obtained by max-flow algorithms. For exawmlfind a NCM
subgraph from Fig.1(b) which consists of four paths, as shown below.

p:(s,k) = s—a—t; #is,t) = s—>b—Ur—>W;—C—Uz—Wa—ty;
Pi(S,b) = S2a—U—Wi—C—Us—W—ty; P2(S,b) = S—b—ty;

The corresponding chromosome is illustrated in Fig.2.

pi(s.ty)

p'.’(sstl )
Chromosome:; <  =-=--eeeeeee-

} Basic Unit

} Basic Unit

Fig.2 An example chromosome

Based on the path-oriented encoding, the chromosome evaluation is simple. For chroXpsiome
union of all paths irX forms the corresponding NCM subgraph. The fitness, dfX), is known by counting
the number of coding links used in the NCM subgraph. So, the computation complexity hemn#icsusilty
lower than that of BLS and BTS encodings.

Compared with BLS and BTS, path-oriented encoding has two advantages. First, for any ifsance, t
search space consists of feasible solutions only. The absence of infeasitimsdéads to a connected
search space, and thus helps to reduce the problem difficulty for EAs. Secondpthescime evaluation is
less time-consuming.

3.4 Initialization

It is widely recognized that, for EAs, a good initial population is moreliko lead to a better
optimization result. For the proposed algorithm, we initialize the populatidreifotiowing way. First, we
create an allelic BU pool (pool-i) for each receivewhere i = 1...,d. Second, we randomly choose one BU
from pool-i, i = 1,..,d, and combine the selected BUs as a chromosome. The second step is repeated to
create a population of a predefined size.

Let pop be the population size angd I& the decomposed graph. Let R denote the expected data rate and
hence each BU contains R link-disjoint paths. Let Flow(apnd Vol(s,) be the max-flow (made of



link-disjoint paths) and its volume from s to receiverdspectively. The max-flow algorithm (Goldberg,
1985) is used to calculate Flow(sand Vol(s,). Fig.3 shows the initialization procedure of our EA based on
the path-oriented encoding.

/I Generation of BU pools
1. fori=1toddo
2 Set @mp= Gp and pool-i= &
3 for j = 1to popdo
3 Find Flow(s)tfrom Gemp by the max-flow algorithm (Goldberg, 1985)
4 if Vol(s,) > Rthen
5. Randomly select R paths from Floy(ag a new BU
6 if the new BU is not in poolthen
7 Put this BU into pool-i
8 Set Gmp= Gp
9 Randomly select a BU (with at least one auxiliary fikh pool-i
10. Randomly choose an auxiliary link owned by the sel&tfed
11. Delete this auxiliary link from&p
/I Generation of the population
12. for j=1to popdo
13. fori=1toddo
14. Randomly select a BU from pool-i
15. Include the BU in the j-th chromosome
16. Output the initial population

Fig.3 The procedure of initialization

For a specific graph &, only one BU can be obtained by the max-flow algorithm. To obtain aitallel
BU pool for receiver;t we have to change the structure @f,goy deleting different links from gat each
time. As aforementioned, how the information flows pass through a given network depethésstates of
all auxiliary links in the decomposed network. So, only the auxiliary linke@rsidered for deletion in our
EA. To generate a new BU for receivervie randomly pick up a BU from pool-i and randomly select an
auxiliary link owned by the BU, as shown in steps 9 and 10. The selected th&kisemoved from ., to
make sure the new. G, is different graph.

3.5 Crossover

In the proposed EA, we use single-point crossover to each pair of selected chromosthirees
crossover probability o As aforementioned, there are d BUs in a chromosome. The crossover point is
randomly chosen from the (d 1) positions between two consecutive BUs. Two offspring are created by
swapping the BUs of the two parents after the crossover point. An example eragsenation is illustrated
in Fig.4, where each parent consists of four BUs and the crossover poativeeb the second and third
BUs.

First, the proposed crossover does not destroy any BU. So, after crossover, tigaifepall feasible
to warrantee a connected search space. No repair is required, which is usually needetldsdd/fon the
BLS and BTS encodings. Second, the genetic information of the parents could be mixed and spread over



offspring chromosomes so that new regions in search space are explored.

Parentl Parent2 Offspringl Offspring2
BUY, | BUy, | BUy, B
BU, B, | Crossover | LBUR :_BG_:

e I"OSS.O\'el e o
BUjs | BU, | Bt | BU, | BUss
BUy :_BGM_: :_éa;: BUys

Fig.4 An example of the crossover operator

3.6 Mutation

Mutation is to help the local exploitation and avoid the prematurity of EAs. As mentioned in section 3.3
each BU is a set of R link-disjoint paths from the source to a particular receivetioMutaon a BU leads to
another set of R link-disjoint paths. The idea behind the mutation is thataaxifiary links owned by the
chosen BU are deleted from the secondary graphT@en, the new BU is generated by implementing the
max-flow algorithm on the new G We propose two mutation operators, the ordinary mutatigramd
greedy mutation & where each BU of a chromosome is to be mutated with a mutation probahilithe
difference between Mand M is on which links in the chosen BU are deleted. In this paper, we only noncer
the removal of auxiliary links since they determine the amount of coding resources required.

In My, for a chosen BU, we randomly select an auxiliary Imkhe BU and delete the link from the
decomposed graphyGAfter that, we compute the max-flow, i.e. Flowjsly using the max-flow algorithm
on & (Goldberg, 1985). If the volume of Flow(s,Mol(s,t), is not smaller than the expected data rate R, a
new BUis obtained by randomly selecting R paths in Floy(slhe new BU then replaces the old BU. If
Vol(s,t) is smaller than R, the data rate requirement cannot be met and the old BU remains. Thespsbcedur
M, is shown in Fig.5, where rf)dgenerates a random value uniformly distributed in the range [0,1]. Fig.6
shows an example &U mutation using M| where the example network G and its decomposed network G
are illustrated in Fig.1. Note that links-4w,; and y—w; are the only auxiliary links in the chosen BU. In
the example, link #4-ws is removed from & and a new BU is found based on the neyw G

In M4, a random auxiliary link is deleted fromp @ compute a new BU. The new BU, combined with
the remaining (d- 1) BUs of the chromosome, may lead to an increased number of coding litgss Th
because no domain knowledge is taken into consideration,inT® avoid this we propose the greedy
mutation M which is the same as;Mxcept the way of which auxiliary links are chosen to be deleted.

In M,, when deleting auxiliary links from & we concern not only the chosen BU but also the
remaining (d- 1) BUs. A random auxiliary link owned by the chosen BU is deleted frgrto@ake sure
that a new different BU is introduced. We also deletegrti®se unoccupied auxiliary links which connect
to one of the outgoing auxiliary nodes being occupied by the remaininddBUs, to make sure that no
additional coding links are introduced after,.MOne advantage of Mis that the fithess value of a
chromosome tends to be smaller after mutation. Howevemay lead the search to local optima.



1. for j=1topopdo
2. fori=1ltoddo
3. if rnd() < pnthen
// the i-thBU of the j-th chromosome is chosen
4. Set gnp= Gp
5. if the i-th BU owns at least one auxiliary litthen
6. Randomly select an auxiliary link ownedhayi-th BU
7. Delete the link fromdG,
8. Compute Flow(@from Gemp using the max-flow algorithm
9. if Vol(s,t) > Rthen
10. Randomly select R paths from Fgyvand replace
the old BU with the R paths
11. Output the mutated population

Fig.5 The procedure of the ordinary mutation M

(a) the chosen BU (b) link deletion from G (c) the new BU
Fig.6 An example of the mutation operatof M

Regarding the mutation probability,pa fixed value may not be a wise choice since the number of BUs
in a chromosome changes according to d, i.e. the number of recéifered p,, value, e.g. 0.1, could lead
to a dramatically different number of mutation operations during the evolutiochwimy not generally
applicable for different multicast sessions. In our EA, we getpdl/d, thus the amount of mutation
operations involved does not change too much in differeiticast sessions, hence more likely to lead to a
stable optimization performance oAE

3.7 The L ocal Search Operator

To enhance local exploitation, we propose a local search (LS) operator whichasmpdrfon a
randomly selected chromosome at each generation.

The aim of this operator is to revise some BUs of the selected chromosomazltally reduce the
number of coding links involved in the multicast. Note that each outgoing lirkk wierging node is



redirected to an outgoing auxiliary node after the graph decomposition, as disoussetion 3.1. So in the
NCM subgraph of an arbitrary chromosome, each coding link corresponds to a certainnoodir{ge. an
outgoing auxiliary node that performs coding). To reduce the number of coding nodes isctsa@ldhe
number of coding links. Assume there is a chromos¥na# which the NCM subgraph contains K coding
nodes, where K is an integer. The LS operator aims to remove the occurrence ofopedaigpn at each
coding node. The K coding nodes will be processed one by one, in an ascending ordemgatzdhdiir
node IDs.

We assume the k-th coding node (denoted by cnode-k, k =.1, K) is to be processed by the LS
operator. We also assume that there are G (8 auxiliary links connecting to cnode-k in the NCM
subgraph ofX, meaning information via these links is involved in the coding at cnode-kemove the
coding from cnode-k, one simple idea is to delete arbjgr&€ — 1) auxiliary links from the NCM subgraph
of X. However, directly removing these links leads to an infeaXitdece BUs which occupy these {Q)
links are damaged. To overcome this, our LS operator reconstructs the affdstad that they bypass the
use of the (G- 1) auxiliary links mentioned above, explained as follows.

First of all, we randomly select (€1) auxiliary links connecting to cnode-k and check which BUs are
occupying these links. The affected BUs will be reconstructed, wiglethers remain in the NCM subgraph.
Next, we delete the selected {Q) auxiliary links from the decomposed graph Besides, we also delete
those currently unoccupied auxiliary links frony @hich connect to one of the outgoing auxiliary nodes
being occupied by the unaffected BUs. The reason to remove the unoccupied auxiliary links is that we expect
to reduce the chance of removing one coding node at the expense of introducing otigemodeis).
Finally, we reconstruct the affected BUs by using the max-flow algorithm ayelf @ll the affected BUs
are successfully constructed, we obtain a new chromoXogelf X..w 0Wns less coding links thax, we
replace the incumberX with X, (i.e. the LS moves to an improved solutidr.,) and repeat the LS
operator to improve the new incumbefit,, Otherwise, we retaiX and proceed to the next coding node of
X. The LS operator stops when either no improverismade to the incumbent chromosome after checking
all its coding nodes, or a new chromosome with no coding involved (i.e. optimal) is found.

An example LS is shown in Fig.7, where Fig.1(a) is the example network. The exanileudGraph
Gnem consists of two BUSs, i.e. BlE {s—a—t;, s»>b—-u,—»w,—d—u,—ws—t;} and BU, = {s—b—t,,
s—a—u;—W,—d—u;—W;—t,5}, as seen in Fig.7(a). Obviously, node i the only coding node in\gu.
According to the rule of LS, one of the incoming auxiliary links, i.e>w, and y—w,, needs to be
removed from G. In the example, link &>w;, is chosen for removal and hence the affected BU, i.g¢, BU
has to be reconstructed. Besides, as auxiliary nogaadwy are currently occupied iU, all unoccupied
auxiliary links heading to mand w also need to be deleted froms.&o0, link y4—ws is deleted. Based on the
new &, a newBU, = {s—b—t,, s»a—u;—w,—Cc—U;—W,;—ty} is rebuilt, as shown in Fig.7(c). It is easily
seen that the combination BUJ; and BY results into a NCM subgraph without coding operation. Hence,
the LS procedure stops and returns the resulting NCM subgraph.

The LS operator is useful to improve the solution-quality (i.e. bettes§ijra the selected chromosome.
Also, it changes the structure of the chromosome. Hence, the new chromosome may also megséothe
population diversity. The evaluation of the LS operator is discussed in section 4.7.



(@) Gyem before LS (b) link deletion from G (c) Guew after LS
Fig.7 An example of the local seard!t5j

3.8 The Overall Procedure of the Proposed EA

The procedure of the proposed EA is shown in Fig.8. The evaluation of chromogoniie Xtep 4) is
simple. In G, we mark those nodes and links being occupied by theiBXgt). The union of the marked
nodes and links forms the NCM subgrapirof Xi(t). The number of coding links inNgy, i.e. ®(Gnew),
is assigned to &) as its fithess. In step 8, tournament selection (Mitchell, 1996) is adopbed jmoposed
EA. The tournament size is set to 2, which is a typical setting for EAs. In step 9,iime stiheme is used to
preserve the besbtfar chromosome. In step 11, either the ordinary mutation or the greedy mutatiom can b
used here. The termination conditions are that, either the EA has found a chrenodsehich the NCM
subgraph has no coding link, or EA has evolved a predefined number of generations.

1. Initialization

2. Sett=0;

3. Create an initial populatioX{(t), ..., Xpodt)} by using the proposed initialization operator; // see section 3.
4, Evaluate each chromosoiiét), i = 1,..., pop;

5. Randomly select one chromosome and perform LS opersitpr/csee section 3.7

6. Repeat

7. Settt+1,

8. Select a new populatioX{(t), ..., Xpeit)} from the old one by using the tournament selection;

9. Replace a random chromosome with the best chromosonee@Ethous generation, e Xpes(t-1);

10. Execute crossover to each pair of selected chromosomes wgishao probability § // see section 3.5
11 Execute mutation to each BU of each chromosome with mutatbalglity p,, / see section 3.6

12. Evaluate each chromosoXgt), i = 1,.., pop;

13. Randomly select one chromosome and perform the LS openatpf/see section 3.7

14. until the termination condition is met

Fig.8 The procedure of the proposed EA



4. Perfor mance Evaluation

In this section, we first introduce the test instances used to evaluate thenpaderof the proposedAE
(we hereafter call it pEA). We then investigate the deficiency of Bh& BTS encodings. After that we
study the effectiveness of the crossover and mutation of pEA, and compare EAs with pati;dBieGtand
BTS encodings. The LS operator is studied next. Finally, we compare pEA with the exissitig terms of
optimization performance and computational time.

4.1 Test Instances

We consider 14 test instances, four on fixed networks and 10 on randomly generated nehedidw. T
fixed networks are 3-copy, 7-copy, 15-copy and 31-copy networks which have been ussd tte
performance of EAs for a number of network coding based optimization protteéms{( al, 2007b; Xing
and Qu, 2011a, 2012, 2013). Fig.9 illustrates an example of n-copy network, where) k@ ®-copy
network constructed by cascading 3 copies of the original network in Bigl@(a n-copy network, the
source is the node on the top and the receivers are at the bottom. The n-copy network heseiverd to
which data rate from the source is 2. We hereafter call 3-copy, 7-copy, 15-copy-aody3ietworks as
Fix-1, Fix-2, Fix-3, and Fix-4 networks, respectively. THe random networks (Rnd-i, = 1,...,10) are
directed networks with 20 to 60 nodes. Table 1 shows the 14 instances and their parametersurbge
scientific comparisons, all instances are provided at http://www.cs.nott.ac.ukemggmarks.htmThe
predefined number of generations for all algorithms tested is set to 208xpdtiments were run on a
Windows XP computer with Intel(R) Core(TM)2 Duo CPU E8400 3.0GHz, 2G RAM. rEkelts are
achieved by running each algorithm 50 times.

(a)

Fig.9 An example of n-copy network (a) original network (b) 3-copy

Table 1 Experimental Networks and Instance Parameters

Original network G Decomposed graphgG
Networks . i . auxiliary
nodes links |receiverd rate nodes links .
links
Fix-1 25 36 4 2 49 68 32
Fix-2 57 84 8 2 117 164 80




Fix-3 121 180 16 2 253 356 176
Fix-4 249 372 32 2 617 740 368
Rnd-1 20 37 5 3 54 81 43
Rnd-2 20 39 5 3 65 89 50
Rnd-3 30 60 6 3 94 146 86
Rnd-4 30 69 6 3 113 181 112
Rnd-5 40 78 9 3 124 184 106
Rnd-6 40 85 9 4 91 149 64
Rnd-7 50 101 8 3 178 246 145
Rnd-8 50 118 10 4 194 307 189
Rnd-9 60 150 11 5 239 385 235
Rnd-10 60 156 10 4 262 453 297

4.2 Deficiency of BLS and BT S encodings

Different encoding approaeb could greatlyaffect the performance dEAs (Mitchell, 1996). The
resulting search spaces may be significantly different with respect tamlyahe size but also the structure
and connectivity of the underlying landscape. As discussed in subsection 3.2, in thesegrthespace of
BLS or BTS encoding may contain many infeasible solutions. The solutionghase scattered in
disconnected feasible regiomsthe search space. The connectivity among feasible solutions may be so weak
that to find optimal solution(s) by EAs becomes extremely difficult.

In this section, we statistically measure the proportion of infeasible@wutiPlS) over search space by
randomly sampling. The number of samples is fixed at 10 000 for each instance. Table 2 shesudtshef r
PIS over 10 000 samples. For all instances, the PIS values are more than 99%. lapartient-2,3,4 and
Rand-5,7,8,9,10, the PISs of BLS and BTS are always 100%, meaning that all samples aldeinfeasi
solutions which constitute the majority of the searchceplLarge amount of infeasible solutions could
disconnect feasible regions in the search space and dramatically increasebli lifficulty for search
algorithms. Hence, the BLS and BTS encodings may not be appropriate encoding schemesafgetour
problem.

Table 2 Results of PIS over 10 000 Samples (%)

Networks BLS BTS | Networks BLS BTS

Fix-1 99.83| 99.85| Rnd-4 99.83| 9935
Fix-2 100.00| 100.00| Rnd-5 100.00| 100.00
Fix-3 100.00| 100.00| Rnd-6 99.98 99.91
Fix-4 100.00| 100.00| Rnd-7 100.00| 100.00
Rnd-1 99.41| 99.25| Rnd-8 100.00| 100.00
Rnd-2 99.96 99.99| Rnd-9 100.00| 100.00
Rnd-3 99.89 99.84 | Rnd-10 100.00| 100.00

4.3 Performance M easur es

To show the performance of pEA in various aspects, such as the optimal nsahbténed, the
convergence characteristic, and the consumed running time, the following performarice amnetused
throughout section 4.



— Mean and standard deviation (SD) of the best solutions found over 50 runs. Oselldest is
obtained in one run. The mean and SD are important metrics to show the overathgiectoiof a search
algorithm.

— Studentst-test (Walpole et al, 2007; Yang and Yao, 35) to compare two algorithms (e.g. A1 and A2)
in terms of the fitness values of the 50 best solutions obtained. In this papéajlta t-test with 98 degrees
of freedom at a 0.05 level of significance is used. The t-test result can show statistically ifdimegrere of
Al is better than, worse than, or equivalent to that of A2.

— Successful ratio (SR) of finding an optimal solution in 50 runs. The succesgiito some extent,
reflects the global exploration ability of &# to find optimal solutions.

— Evolution of the best fithess averaged over 50 runs. The plot of the evolutietraiiés the
convergence process of an algorithm.

— Average computational time (ACT) consumed by an algorithm over 50 runs. This iset direct
indication of the time complexity of an algorithm.

4.4 The Effectiveness of Crossover in pEA

As mentioned in subsection 3.5, the single-point crossover is used in pEA. We investigeasitiilityf
of this operator and the imgiaof different settings of the crossover probabilityop the performance of
pEA. Mutation and LS operator is excluded in pEA in this experiment. We spophdation size pop = 20
and compare the performance of pEA with four different.e. 0.0, 0.3, 0.6, and 0.9, where=p0.0 means
the algorithm stops after initialization since no crossover is involved. By comgphe results of different.p
and those of p= 0.0, one could see the effectiveness of the crossover.

The results of the mean and standard deviation of pEA with diffegemeshown in Table 3. It can be
seen that pEA with crossover performs better than pEA without crossover in etitansndicating
crossover can properly drive the evolution process. Besides, we find withgatihermean and SD become
increasingly better. The variant of pEA with $ 0.9 performs the best, showing that rapid exchange of
genetic information over different chromosomes helps to explore different mrethe search space.
However, we may also find that there remain big gaps between the best sabtained by pEA with only
crossover and the optimal solutions in each instance. This is mainly becauserapiogsover only is not
enough to guide pEA to escape from local optima. We need mutation to erdeal@xploitation and avoid
prematurity.

Table 3 Comparisons of pEA with Different Crossover Probabilities (Best Results aolel)n B

p.=0.0 p.=0.3 p. = 0.6 p.=0.9
Networks Mean SD| Mean SD| Mean SD| Mean SD
Fix-1 2.84 0.37 1.70 0.61 1.32 0.51 1.08 0.27
Fix-2 9.58 1.45 7.64 1.43 6.78 1.35 6.16 1.23
Fix-3 22.88 0.47 20.68 1.92 19.74 2.00 17.54 1.98
Fix-4 46.94 0.42 45.32 1.89 44,72 1.79 43.20 2.26
Rnd-1 2.44 0.64 1.70 0.64 1.18 0.66 0.96 0.66
Rnd-2 0.62 0.56 0.12 0.32 0.04 0.19 0.02 0.14
Rnd-3 2.64 0.56 1.86 0.70 1.40 0.72 1.22 0.64
Rnd-4 0.72 0.45 0.38 0.49 0.22 0.41 0.10 0.30
Rnd-5 7.58 0.81 5.60 1.08 5.06 1.13 4.46 1.32




Rnd-6 0.40 0.49 0.00 0.00 0.00 0.00 0.00 0.00
Rnd-7 3.86 1.01 3.06 0.79 2.96 1.02 2.34 0.77
Rnd-8 6.84 0.42 5.76 1.04 5.28 1.10 4.64 1.10
Rnd-9 6.00 0.00 5.42 0.67 5.14 0.63 4.98 0.58
Rnd-10 7.94 1.39 6.40 1.22 5.54 151 5.18 1.17

4.5 The Effectiveness of Mutation in pEA

We propose two mutation operators with ¢ 1/d in section 3.6, i.e. the ordinary mutation &hd
greedy mutation M where d is the number of receivers. To mutate a Blddetes a random auxiliary link
of the BU from G while M2 deletes a random auxiliary link of the BU and a number of unoccupied
auxiliary links from G. The removal of the random link is to make sure that the mutated BU isniffer
from the old one. Besides, the removal of those unoccupied links is to ensure no exigdiokduill be
introduced after mutation.

In the following experiment, we compare the performance of pEA with the proposed cramsdver
different mutations. The comparison betweenavid M, can show whether the removal of those unoccupied
auxiliary links helps to improve the performance of pEA. When comparingrnd M, we also study the
impact of different p, i.e. 2/d, 1/d, and 0.5/d. Let{p,) and M(p.) denote the two mutations with,p
respectively. In the experiment, LS operator is excluded. We set pop = 20-a0dp

Table 4 shows the results of mean and standard deviation of the obtained best ditres sy pB&
with different mutations and different,pBetween the two mutations, we find that pEA with pérforms
better than pEA with Mif taking into account the results for all instances. The werfbmpM, is 0.5/d while
the best p for M, is 1/d. If comparing the results of,{0.5/d) and those of ML/d), we see that MO0.5/d
wins in 9 instances while NiL/d) wins in 2 instances, indicating,M more effective than MIn addition,
having a look at Mwith different g, we also find that the mean and SD become better and better,with p
changing from 0.5/d to 2/d. This is because when mutating a Blthales sure that the rebuilt BU does not
increase the amount of coding operations to the corresponding chromosome. On the dastogsible
that coding at one or more nodes of a chromosome is eliminated aftelehte, imposing reasonably more
M, operations to the evolving population is more likely to obtain a bettaniaption performance of pEA.
We hereafter only use the greedy mutation as the mutation operator in our pEA.

Table 4 Results of Mean and Standard Deviation for Different Mutations and Differenidrutat
Probabilities (Best Results are in Bold)

G | | ) e | e | ()

Networks| Mean| SD Mean | SD Mean SD Mean SD Mean SD Mean SD

Fix-1 1.00/ 0.00| 1.00f 0.00f 1.00f 0.00| 0.04 0.19| 0.14| 0.35| 0.26| 0.44
Fix-2 4.06| 0.23| 4.00| 0.00| 4.00| 0.00f 126 059| 1.64| 0.80| 1.94| 0.79
Fix-3 10.52| 1.05| 850| 0.54| 8.44| 057| 572 1.22| 6.04| 092| 6.68| 0.84
Fix-4 29.08| 1.81| 24.30| 0.92| 23.54| 0.88| 17.60 1.50| 18.20| 1.19| 18.30| 1.55
Rnd-1 0.00 0.00| 0.00 0.00| 0.06| 0.23| 0.00 0.00| 0.04| 0.19| 0.06| 0.23
Rnd-2 0.00 0.00| 0.00 0.00| 0.00 0.00| 0.00 0.00| 0.00 0.00| 0.00 0.00
Rnd-3 0.02| 0.14| 0.00 0.00f 0.06| 0.23| 0.00 0.00f 0.04| 0.19| 0.02| 0.14
Rnd-4 0.00 0.00( 0.00 0.00| 0.00 0.00| 0.00 0.00| 0.00 0.00| 0.00 0.00
Rnd-5 1.88| 0.43| 140| 0.53| 150 0.61| 0.00 0.00f 0.02| 0.14| 0.12| 0.32
Rnd-6 0.00 0.00| 0.00 0.00| 0.00 0.00| 0.00 0.00| 0.00 0.00| 0.00 0.00




Rnd-7 1.06| 0.23| 1.02| 0.14| 1.10] 0.30| 0.12 032] 0.34| 047| 0.56| 0.50
Rnd-8 210 030| 216| 0.37| 2.34| 051]| 0.02 0.14] 0.04| 0.19] 0.30] 0.6
Rnd-9 246| 057 206| 0.46| 236| 0.66| 0.80 0.40| 0.86| 0.35] 0.94| 0.23
Rnd-10 192 048] 162| 049| 1.76| 0.59| 0.00 0.00] 0.00 0.00] 0.06] 0.23

To further support our findings, we compare different mutations with diffep, by using Studerd
t-test (see subsection 4.3), where results are given in Table 5. The resulpafisombetweeAl—A2 is
shown as‘+”, “-”, or “~” when Al is significantly better than, significantly worse than, or stalbti
equivalent to A2, respectively. The table shows thatidvisignificantly better than Min 9 instances and
statistically equivalent to Min the remaining instances, which undoubtedly reflects the superioriids of
over M,. Moreover, M with a larger p performs better than Mwith a smaller p. However, their
performances do not differ too much. For example, betweg8/&} and M(1/d), the former only wins 2

instances.

Table 5 t-Test Results for Different Mutations and Different Mutation Probabilities
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The results of the successful ratio and average computational time are colletadaeir6. For the
successful ratio, the results match to our findings from Table 4, wheie bétter than Mand a larger p
results ino a better performance of MFor the average computational time, we find that the computational
complexity of mutation is higher than that of evaluation.

Table 6 Results of Successful Ratio and Average Computational Time

SR (%) ACT (sec.)
etvorks | "8 | (5] | WS walE) | welG) | el B lF) | i3] |l )| wlE) | wolS) | F)
Fix-1 0 0 0 96 86 74| 8.89 4.7475 2.6437 0.39] 0.61] 0.69
Fix-2 0 0 0 6 8 2| 23.97) 12,50 7.29] 22.29 1172 7.81
Fix-3 0 0 0 0 0 0| 67.80] 40.88 22.81 80.69 38.52] 22.51
Fix-4 0 0 0 0 0 0| 253.66 153.67 88.27| 306.12 180.47 100.42
Rnd-1 100 100 94 100 96 94| 2.21) 0.69 061 0200 0.39] 0.33
Rnd-2 100 100 100 100 100 1000 0.13] 0.10f 0.09] 0.11] 0.09] 0.09
Rnd-3 98 100 94 100 96 98| 5.12] 155 1.80, 042 0.77, 0.49
Rnd-4 100 100 100 100 100 1000 0.39] 0.29] 0.23] 0.25/ 0.18 0.20
Rnd-5 0 0 0 100 98 88| 30.84] 17.23 9.03] 4.07] 2.85 3.66
Rnd-6 100 100 100 100 100 100] 0.23] 0.22] 0.21] 0.23] 0.200 0.21
Rnd-7 0 0 0 88 66 44| 38.36] 20.65 13.23 11.22] 11.31] 9.49
Rnd-8 0 0 0 98 96 70| 59.22| 30.28 17.76] 10.61 10.00, 12.97
Rnd-9 0 0 0 20 14 6| 76.46] 47.11 28.57| 74.10, 38.86 29.85
Rnd-10 0 0 0 100 100 94| 108.34 57.63 32.65 6.81] 9.01] 11.43

In general, fithess evaluation is assumed to be the most time-consuming operagiaredomwith other
operations such as selection, crossover and mutation for highly complex optimizatems. However,
the above assumption is no longer held in pEA (without the LS operatergwnutation takes a comparable
larger computation time over the fitness evaluation. In mutations (i.@nif M), computation is spent on
two steps, i.e. the removal of some auxiliary links from the decomposed gsagrtd@e reconstruction of a
new BU. The max-flow algorithm in (Goldberg, 1985) is used, leadinga ttme complexity of
O(W [ |B[M3, where |¥| and |E| are the number of nodes and links i &spectively. Compared with the
reconstruction of the BU, the removal of auxiliary links consumes very linsibatputation and can be
ignored. Hence, to mutate a chromosome (no mattesrNil,), we require a complexity of ) where @, =
O(Pm d- NP |Bo[“d). In contrast, to evaluate a chromosome, we only need to obtain the NCM subgsaph G
of this chromosome and check how many outgoing auxiliary nodes perform codigguinrAG mentioned in
section 3.3, each au consists of BUs, each of which contains R paths, e.gs,p) is the i-th path of the
k-th BU. Let Ly be the string length of,(s,i) in the chromosome. To obtain adg from the corresponding
chromosome, the amount of computation involved Lk, where l, < |\b|. We assume there are Y
outgoing auxiliary nodes ingwvhere Y < || since at least the source and receivers are not decomposed. To
check the status of all outgoing auxiliary nodes jg\athe amount of computation involved is Y. Therefore,
to evaluate a chromosome requires a complexityeof O(|\bf) < Qu.

According to the above finding, the computational time in pEA is mainly spent on utetion
operations during the evolution. Hence, the computational time of pEA should be proptotitreaamount
of mutation operations. Let us take some examples to show the linear relationship betweélotibehat
pPEA stopsat two conditions, either a chromosome without coding is found or a predefinedenwh
generations is reached. To show if the computational time changes proportionallatootng of mutation



operations during the evaluation, we should look at those instances where the duatiessfor different
mutation rates are all 0%. In these instances the amount of mutation operatiotiffefent g, is
proportional and we only need to check if the computational time is also poodriraking instance Fix-3
as an example, theoretically, the ratio of the amount of mutations duringaliiavfor Mx(2/d), Myx(1/d)
and My(0.5/d is 4:2:1. In practice, the ratio of the average computational time ,(@/d), Mx(1/d) and
M»(0.5/d) are calculated as 3.58:1.71:1.00 which is similar to the theoretical ratio.

4.6 Comparisons of Different Encoding Approaches

In this section, we show the superiority of the path-oriented encoding over othéngerincoding
approaches by comparing the performance of three EAs, i.e. pEA, GA with BLS en®Id8®A) and GA
with BTS encoding (BTSGA). For the BLS and BTS encoding approaches please saxt @Ki2007b) and
section 3.2 for details. Note that an all-one chromosome is inserted into iddepyitulation of BLSGA and
BTSGA to make sure they begin with at least one feasible solutionwigbkethe two GAs may never
converge since no feasible solution may be obtained during the search (Kim et al, 2037hasThowed
to be an effective method in previous work (Kim et al, 2007a, 2007b; Xing and0Qiia, 2011b, 2012
2013).

The comparison is based on a standard GA framework, where genetic operators i\ éaclide
selection, crossover and mutation. The population size and the tournament sizeéca®® satd 2 for each
algorithm, respectively. In pEA, we use the greedy mutation and sed.p and p = 1/d. Weadopt the best
parameter settings for BLSGA and BTSGA in (Kim et al, 2007b). In BLSGA, .8 and p = 0.006. In
BTSGA, p = 0.8 and p = 0.012. Besides, BLSGA and BTSGA use the uniform crossover with a mixing
ratio of 0.5 andh simple mutation where each bit of a chromosome is flippegl.at p

The performance comparisons of EAs with different encodings are shown in Talglsides the t-test
results are provided in Table 8. Undoubtedly, pEA achieves better optimizatidis @esd consumes less
ACT than BLSGA and BTSGA in almost all instances.

Table 7 Comparisons of GA with Different Encoding Approaches

Mean andsD SR (%) ACT (sec.)
BLSGA BTSGA pEA BLSGA | BTSGA| pEA |BLSGA|BTSGA | PpEA

Networks Mean SD| Mean SD| Mean SD

Fix-1 0.46| 1.01] 0.74/ 1.20, 0.14 0.35 80 68 86 1.13] 1.47] 0.61
Fix-2 3.82| 4.26] 3.86] 3.93 164 0.80 8 2 8| 11.47| 11.85 10.72
Fix-3 7.92] 5.64] 1192 6.000 6.04 0.92 0 0 0| 54.57| 51.19] 38.52
Fix-4 37.60 9.19| 43.22] 4.47| 18.20 1.19 0 0 0| 98.51] 72.55 180.47
Rnd-1 0.96| 1.29] 1.000 1.48 0.04 0.19 46 54 96 3.17/ 2.86| 0.39
Rnd-2 0.44 0.83] 0.38) 0.75 0.00 0.00 78 78 100, 0.91] 1.12] 0.09
Rnd-3 0.40, 0.98/ 0.66| 1.20 0.04 0.19 84 74 96| 4.02| 4.21] 0.77
Rnd-4 0.28/ 0.45] 0.08] 0.27] 0.00 0.00 72 92 100, 295 1.98 0.18
Rnd-5 298] 4.01| 4.22] 470 0.02 0.14 8 10 98| 15.75 13.45 2.85
Rnd-6 0.42 0.81] 0.36] 0.77] 0.00 0.00 78 82 100 3.05| 2.67] 0.20
Rnd-7 2.14) 195 2.72| 216/ 0.34 0.47 10 6 66| 21.11] 19.15 11.31
Rnd-8 3.04/ 194/ 3.88 196/ 0.04 0.19 2 0 96| 32.60| 29.23] 10.00
Rnd-9 3.68/ 1.40, 4.24/ 159 0.86 0.35 0 2 14| 51.49 45.81] 38.86
Rnd-10 3.52| 3.40f 3.76/] 3.50, 0.00 0.00 4 0 100, 62.04f 57.25 9.01




Table 8 t-Test Results for Different GAs

Networks | pPEA<~>BLSGA | pEA-BTSGA | Networks| pEA<>BLSGA | pEABTSGA
Fix-1 + + Rnd-4 + +
Fix-2 + + Rnd-5 + +
Fix-3 + + Rnd-6 + +
Fix-4 + + Rnd-7 + +
Rnd-1 + + Rnd-8 + +
Rnd-2 + + Rnd-9 + +
Rnd-3 + + Rnd-10 + +

To show the convergence of the three EAs, we plot the evolution bE#iditness in each generation,
averaged over 50 runs for two fixed and four random instances, as shown in Fig.10. First, veetlcah se
pPEA always obtains better initial solutions than BLSGA and BTSGA. example, in Fig.10(a), at the
beginning of the evolution, the average best fithess for pEA is aroumile’ thoseof BLSGA and BTSGA
are both 11. Moreover, we find that pEA converges very fast especidhg iearly generations. To find a
good solution, pEA needs much less generations than BLSGA and BTSGA. This is an outstanding advantage
of pEA especially in real-time and dynamic applications, where a decent solution mustnidewiithin a

very short time.
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Fig.10 Best fitness vs. generation for six instances

Based on the analysis above, we conclude that the path-oriented encoding is more efficient than the BLS
and BTS encodings in terms of global optimization, convergence, and computational time.

4.7 The Effectiveness of the LS Operator

As discussed in subsection 3.7, a LS operator is applied to a randomly chosen chromosome at each
generation to improve the solution quality. To verify the effectiveness sfdpérator, we randomly
construct five chromosomes for each instance by using the initialization metreatiom3.4. We apply the
LS operator on each chromosome and compare the fithess values of the chromosome dedfier an
implementing the LS operator, i@ger and®aer. Let X andX' denote the chromosome before and after the
LS, and K(X) and B (X') be the set of auxiliary links owned B§ and X', respectively. We define the
structural difference coefficient (SD@)betweenX andX' according to the Marczewski-Steinhaus concept
of distance (Marczewski and Steinhaus, 1958), as follows:

_IEAX) VEL X)) = EA) N EaX)] 4 g 3)
[EA(X) UEL(X)]

The value of SDC is between 0.0 and 1.0, which tells us to what dé¢greeX’ are different, showing
the effect of LS operator on the structure change of solutions. A I8i€rindicates a severer structural
change caused by the LS operator.

Table 9 Results of the LS Operator

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5
Networks Dper | Darr |p (%) Dger | Paer |p (%) Dger | Paer |p (%) Dper | Paer |p (%) Dper | Darr |p (%)
Fix-1 3 0 545| 4 0 20.0] 3 0 30.0] 5 0 36.3| 6 0 50.0
Fix-2 12 0 51.7| 18 0 53.1| 13 0 54.8| 16 0 56.2| 14 0 53.3
Fix-3 30 0 |545]| 35 0 |56.3] 27 0 |545] 29 0 |55.2] 40 0 |528
Fix-4 47 0 |534| 69 0 |53.8| 60 0 |539] 71 0 | 54.9] 70 0 | 573
Rnd-1 4 2 |36.0] 5 3 |17.3] 2 0 |300| 7 3 |269| 6 1 |384
Rnd-2 2 0 8.33| 3 2 185 5 3 741 4 2 11.5| 3 1 33.3
Rnd-3 3 0 38.8| 3 0 19.3| 5 1 341 7 0 452 6 0 50.0
Rnd-4 4 1 257 5 2 256| 4 0 228 1 0 13.7| 2 1 42.1
Rnd-5 12 7 1200 9 3 [178] 11 3 121.8] 8 4 |23.6| 10 2 | 396
Rnd-6 2 0 |21.7] 1 0 [142] 1 0 |44.0] 3 0 |24.0] 2 0 | 25.0




Rnd-7 8 4 |1200| 6 2 1283 4 1 102 9 3 |135] 6 5 [8.33
Rnd-8 8 5 1105 12 7 |158] 11 3 298| 15 8 1204 14 5 |220
Rnd-9 13 7 |15.7] 18 5 [21.7] 8 4 1123| 14 4 119.7] 12 7 159
Rnd-10 12 3 130.8] 15 5 [245] 8 5 1889 9 5 1109 7 3 |311

The experimental results dfzer, ®arr andp are shown in Table 9. First, it is seen gt is smaller
than dsarr especially for instances Fix-3,4, showing that the LS operator can improve the gfiality
chromosomes. Meanwhile, regarding the valueg af all instances, 32 chromosomes (45% of the 70
chromosomes) are at least 30% different on the structure, meaning the LS operatisanbglp to
introduce extra diversity to the population.

4.8 Overall performance Evaluation

This section evaluates the overall performance of pEA by comparing it witlstaie-of-the-art
algorithms in the literature. The following explains the algorithms for comparison.

— GAL1: BLS encoding base@dA (Kim et al, 2007b). Different from BLSGA used in section 4.6, GAl
employs a greedy sweep operator after the evolution to further imprewiality of the best solution found
by flipping each of the remainingslto O if it does not result into an infeasible solution.

— GA2: BTS encoding base&dA (Kim et al, 2007b). The same greedy sweep operator is applied at the
end of evolution as in GAL

— QEAL: Quantum-inspired evolutionary algorithm (QEA) (Xing et al, 2010). Q&#intains a
population of quantum-bithromosomes. Each chromosome is a probabilistic distribution model over the
solution space. Each sampling on a chromosome results into a solution. RotatiostemdRAS) and
guantum mutation probability (QMP) are used to update each chromosome. QEAL is based Id® the B
encoding. For each chromosome, the RAS value is randomly generated and the QMP valuedsds®g ac
to the current fitness of the chromosome.

— QEA2: Another QEA proposed by Ji and Xing (2011). The main difference between QEA2 and
QEAL is that in QEA2 the RAS and QMP values of a chromosome are adjusted accotigingu@ent and
previous fitness values of the chromosome.

— PBIL: Population based incremental learning algorithm (Xing and Qu, 2011a). BLS encoding is used.
PBIL maintains a real-valued probability vector (PV) which, when sampledupes promising solutions
with higher probabilities. At each generation, the statistic informatiohigif quality samples is used to
update thé®V. A restart scheme is introduced to help PBIL to escape from local optima.

— cGA: Compact genetic algorithm (Xing and Qu, 2012). Similar to PBIL, cGAraisntains a PV.
However, the PV in cGA is only sampled once at each generation. The new saogie#ed with the
bestsofar sample and between the two the winner is used to update the PV. Based on BLS encoding, cGA is
featured by a restart scheme and a local search operator.

— pEAL: the path-oriented encoding EA. Note that LS operator is excluded. Toenmerte of pEAL
will demonstrate the pure evolutionary search ability of the proposed algorithm.

— pEAZ pEAL with LS operator, which indicates the overall performance of the proposed algorithm.

The population size is set to 20 for each algorithm. For GA1, we.se08 and p = 0.006. For GA2,
we have p= 0.8 and p= 0.012. For QEAL, QEA2, PBIL and cGA, we adopt their best parameter settings



(Xing et al, 2010; Ji and Xing, 2011; Xing and Qu, 2011a, 2012). For pEA\LBEAdwe set p= 0.9 and
pm = 1/d, where d is the number of receivers.

The comparison results are collected in Table 10, where the best results in eneahadd. First, we
analyze the data in Mean and SR for each algorithm. It can be seen thatlpBy® @erforms the best in
each instance while cGA is the second best. The third best algorithm is PBIL. @dmptr QEAL and
QEA2, PBIL performs better in 6 instances (see Fix-2,3 and Rnd-5,7,9,10) and worse in 2sni&eaac
Fix-4 and Rnd-8). The comparison of pEAL and pEA2 illustrates that LS operator help to improve tlhe overa
performance of the proposed algorithm. In some cases the improvement is substarttial,reegin and SR
in instances Fix-2,3,4. When comparing pEA1 with the existing algorithms, we cmatieefix networks,
pPEA1 has similar performance with GAL1. In random networks, pEA1 gains sipeittarmance with PBIL
except for instances Rnd-8,9 and illustsdietter performance than GAs and QEASs in most instances.

Next, we compare the ACT of the algorithms. Before analyzing the data, we divibé itteances into
two groups according to their PIS values (see subsection 4.2). Those with a Plgssathan 100% belong
to the first group (called easy instances) while the rest belong to the seoapd(cplled hard instances).
Easy instances includes Fix-1 and Rnd-1,2,3,4,6 while hard instances are Fix-2,3,4 and Rnd-5,7,8,9,10.
Regarding easy instances, one can find that more than half of the state-ofalymdthms (GAL, GA2,
QEAL, QEA2, PBIL, and cGA) can find an optimal solution with a successful ratio of.188%er hard
instances, most of the state-of-the-art algorithms have a lower successfillaati®0%In easy instances
most of algorithms can obtain an optimal solution within a short time (e.g. les$ swmond). Howeven
each hard instance, the ACT spent by each algorithm differs significkinégsy instances, QEAL, QEA2,
PBIL, cGA, pEAL and pEA2 all consume simil&€T (i.e. less than 1 second) while GA1 and GA2 are the
two worst. In hard instances, pEA2 and cGA are the two fastest algorithms. Besides, the dostser
significantly less time than the latter in instances Fix-3,4 and Rnd-5,8,9,10. pEAL tisirthdastest
algorithm. The difference between pEALl and pEA2 also indicates the effectiverieSsirofeducing the
computational time.

Table 10 Comparisons of Different Algorithms

Mean and SD
GA1 GA2 QEAL QEA2 PBIL cGA PEAL PEA2
Networks |Mean| SD |Mean| SD |Mean| SD |Mean| SD |Mean| SD |[Mean| SD |Mean| SD |Mean| SD
Fix-1 0.36| 074 0.08 0.27 000| 0.00 000 0.00 000/ 0.00 000 0.0 0.4 0.35 000/ 0.00
Fix-2 1.96) 1.92 068 084 0.8 0.62 048 070 000] 000 000] 000 1.64 0.80] 000 0.00
Fix-3 7.48| 512 3.66] 2.13 3.10] 4.18 580 1.62] 214 431 000| 000 6.04 092 000] 0.00
Fix-4 28.75 7.97) 18.66| 2258 19.10| 5.76( 20.00 0.00] 28.90 10.30, 000 0.00] 18.20 1.19] 0.00| 0.00
Rnd-1 0.52| 0.88 0.44] 050 000| 0.00 000 0.0 000 0.00 000 0.0 0.04 0.19 000/ 0.00
Rnd-2 0.26| 0.66 002 0.14] 000| 0.00 000 0.0 000/ 0.0 000 0.0 000] 0.00 000 0.00
Rnd-3 0.44| 083 002 0.14] 000| 0.00 000 0.00 000 000 000 0.00 0.04 019 000/ 0.00
Rnd-4 | 000 0.00 000 0.00 000 0.00 000 0.00 000 0.00 000 000 000 0.00 000 0.00
Rnd-5 2.78| 2.71] 1.16[ 0.61] 046 050 048 054 004 028 004 019 002 014 000 0.00
Rnd-6 0.22| 0.41] 000 0.00 000| 0.00 000 0.00 000 0.00 000 0.00 000 0.00 000 0.00
Rnd-7 1.58] 0.92] 1.36] 0.66] 0.66] 047 0.58] 0.53 0.38] 0.60] 0.22] 0.41 0.34 0.47 000| 0.00
Rnd-8 252| 1.44) 2.28 094 098 082 048 061 060 1.56 0.24 043 0.04 0.9 000 0.00
Rnd-9 2.82] 1.22] 2.34] 1.34 164 098 194 116] 006 023 004 019 086 035 000 0.00
Rnd10 | 3.26] 2.68 1.38 0.69 066 0.68 042 064 000 000 008 027 000 0.00 000 0.00
SR (%) ACT (sec.)
Networks | a1 | GA2 |QEA1|QEA2|PBIL | cGA |pEA1 [pEA2 | GAL | GA2 [QEA1 |QEA2 | PBIL | cGA |pEA1 |pEA2




Fix-1 80 92| 100[ 100, 100/ 100 86| 100 0.99] 1.61) 0.24/ 0.21) 0.10] 0.02| 0.61] 0.09
Fix-2 14 52 88 62| 100/ 100 8| 100| 12.42| 11.98 8.54| 10.41 2.20{ 0.15] 10.72] 0.33
Fix-3 0 4 26 0 58| 100 0| 100| 55.85| 49.27| 89.88 91.61 66.14] 2.09| 38.52] 1.57
Fix-4 0 0 0 0 0| 100 0| 100|232.92/200.73 728.13 750.70| 543.64 29.55/180.47| 20.79
Rnd-1 62 56| 100/ 100| 100[ 100 96| 100f 2.95 3.30] 0.73] 0.50, 0.29] 0.23] 0.39] 0.16
Rnd-2 86 98| 100/ 100/ 100{ 100/ 100 100, 1.14| 1.33] 0.37] 0.40, 0.13] 0.02] 0.09] 0.11
Rnd-3 76 98| 100/ 100| 100[ 100 96| 100| 5.13] 5.07] 0.68 0.75 0.23] 0.06| 0.77| 0.27
Rnd-4 100 100{ 100{ 100/ 100f 100 100 100 3.19| 3.13] 0.57] 0.81) 0.26| 0.16| 0.18] 0.23
Rnd-5 4 10 54 54 98 96 98| 100| 16.57| 14.52 13.82 14.38 6.09] 3.14| 2.85 0.63
Rnd-6 78| 100f 100| 100/ 100{ 100 100 100| 3.54| 3.34| 0.72] 0.84/ 0.17| 0.03] 0.20] 0.23
Rnd-7 8 8 34 44 68 78 66| 100| 24.13] 20.78 24.35 22.52| 24.29| 6.83| 11.31] 2.10
Rnd-8 2 0 30 58 82 76 96| 100| 38.37| 30.89 38.04| 31.47| 27.43 20.11f 10.00, 0.95
Rnd-9 4 8 14 10 94 96 14| 100| 62.46| 50.73 73.73 73.94| 47.29 16.40 38.86| 1.93
Rnd-10 4 6 46 64| 100 92| 100| 100| 71.25 55.46/ 64.12| 52.39 31.81| 17.42) 9.01| 1.15

Regarding the overall performance in Table 10, we see that gEA2 best among the eight algorithms.
Besides, pEA1 has similar performance with GAl in fix networks and PBIllrandom networks,
respectively. Meanwhile, the LS operator has a positive impact on imprévaraverall performance of the
proposed algorithm. To further support the finding, we show the t-test resulpacoghnpEA2 and pEAL
with the others in Table 11.

Table 11 t-Test Results for Comparing Different Algorithms

Networks

Fix-1

Fix-2

Fix-3

Fix-4

Rnd-1

Rnd-2

Rnd-3

Rnd-4

Rnd-5

Rnd-6

Rnd-7| Rnd-8

Rnd-9|Rnd-10

PEA2>GAL

+

+

+

+

+

+

+

PEA2>GA2

+

pEA2-QEAL

PEA2->QEA2

+
+
+

+
+
+

+ |+ |+

+ |+ |+

pEA2-PBIL

+ |+ |+ [+

+ |+ |+ [+

13

PEA2>CGA

13

13

+ |+ |+ |+ |+

13

+

PEA2>pEAL

14

14

pEAL&GAL

+ |+

PEALGA2

pEA1-QEAL

pEAL-QEA2

+ |+ |+ |+

o o I o o R A o R

+ [+ |+ [+ |+

+ [+ |+ [+

pEA1-PBIL

13

pEAl-~CGA

+ o+ |+ [+ |+ |+

Note: The result of comparison between AlgoritkmAlgorithm2 is shown a$+”, “=”, or “~” when the former is significantly

better than, significantly worse than, or statistically equivalent to the lespectively.

5. Conclusions

This paper investigates the network coding resource minimization probledeegidps a path-oriented
encoding evolutionary algorithm (pEA) based on a new encoding approach. Differarih& existing EAs
which are based on the BLS or BTS encodings, the new EA is based on path-oriented eB@mting
chromosome consists of a number of basic ulitss], each of which contains a set of link-disjoint paths

from the source to the same receiver. In accordance to the new encoding approach, we develop the& associa

initialization, crossover and two mutation operators in the proposed EA. It isyetdgbat between the two
proposed mutation operators, the greedy mutation is more likely to irdsudt better performance than the



ordinary mutation. Besides, a problem-specific local search operator is alsopgeléd improve the
solution quality. The simulation results show that the proposédquiperforms six existing state-of-tlag-

algorithms regarding the best solutions obtained and the computational time consumedtheéuacio

path-oriented encoding and the associated operators designed accordingly.
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