1,064 research outputs found

    Effect of nanoparticle morphologies on signal strength in photoacoustic sensing

    Get PDF
    Spherical gold nanoparticles with a plasmonic extinction peak at 532 nm and two sizes of star shaped gold nanoparticles with plasmonic extinction peaks at 532 nm and 600 nm were synthesised and introduced into tissue phantoms as exogenous absorbers. The photoacoustic signals generated from the three different nanoparticle morphologies embedded in tissue the phantoms is compared. The effect of nanoparticle concentration on the generated photoacoustic signal strength was also investigated for the spherical nanoparticles. At an excitation laser wavelength of 532 nm, the spherical gold nanoparticles were shown to produce the greatest photoacoustic response

    Trapping of Projectiles in Fixed Scatterer Calculations

    Full text link
    We study multiple scattering off nuclei in the closure approximation. Instead of reducing the dynamics to one particle potential scattering, the scattering amplitude for fixed target configurations is averaged over the target groundstate density via stochastic integration. At low energies a strong coupling limit is found which can not be obtained in a first order optical potential approximation. As its physical explanation, we propose it to be caused by trapping of the projectile. We analyse this phenomenon in mean field and random potential approximations. (PACS: 24.10.-i)Comment: 15 page

    Boundary of two mixed Bose-Einstein condensates

    Full text link
    The boundary of two mixed Bose-Einstein condensates interacting repulsively was considered in the case of spatial separation at zero temperature. Analytical expressions for density distribution of condensates were obtained by solving two coupled nonlinear Gross-Pitaevskii equations in cases corresponding weak and strong separation. These expressions allow to consider excitation spectrum of a particle confined in the vicinity of the boundary as well as surface waves associated with surface tension.Comment: 6 pages, 3 figures, submitted to Phys.Rev.

    Multiple locus VNTR analysis highlights that geographical clustering and distribution of Dichelobacter nodosus, the causal agent of footrot in sheep, correlates with inter-country movements

    Get PDF
    Dichelobacter nodosus is a Gram-negative, anaerobic bacterium and the causal agent of footrot in sheep. Multiple locus variable number tandem repeat (VNTR) analysis (MLVA) is a portable technique that involves the identification and enumeration of polymorphic tandem repeats across the genome. The aims of this study were to develop an MLVA scheme for D. nodosus suitable for use as a molecular typing tool, and to apply it to a global collection of isolates. Seventy-seven isolates selected from regions with a long history of footrot (GB, Australia) and regions where footrot has recently been reported (India, Scandinavia), were characterised. From an initial 61 potential VNTR regions, four loci were identified as usable and in combination had the attributes required of a typing method for use in bacterial epidemiology: high discriminatory power (D > 0.95), typeability and reproducibility. Results from the analysis indicate that D. nodosus appears to have evolved via recombinational exchanges and clonal diversification. This has resulted in some clonal complexes that contain isolates from multiple countries and continents; and others that contain isolates from a single geographic location (country or region). The distribution of alleles between countries matches historical accounts of sheep movements, suggesting that the MLVA technique is sufficiently specific and sensitive for an epidemiological investigation of the global distribution of D. nodosus

    Condensate fluctuations in finite Bose-Einstein condensates at finite temperature

    Full text link
    A Langevin equation for the complex amplitude of a single-mode Bose-Einstein condensate is derived. The equation is first formulated phenomenologically, defining three transport parameters. It is then also derived microscopically. Expressions for the transport parameters in the form of Green-Kubo formulas are thereby derived and evaluated for simple trap geometries, a cubic box with cyclic boundary conditions and an isotropic parabolic trap. The number fluctuations in the condensate, their correlation time, and the temperature-dependent collapse-time of the order parameter as well as its phase-diffusion coefficient are calculated.Comment: 29 pages, Revtex, to appear in Phys.Rev.

    Bandlimited approximations to the truncated Gaussian and applications

    Full text link
    In this paper we extend the theory of optimal approximations of functions f:RRf: \R \to \R in the L1(R)L^1(\R)-metric by entire functions of prescribed exponential type (bandlimited functions). We solve this problem for the truncated and the odd Gaussians using explicit integral representations and fine properties of truncated theta functions obtained via the maximum principle for the heat operator. As applications, we recover most of the previously known examples in the literature and further extend the class of truncated and odd functions for which this extremal problem can be solved, by integration on the free parameter and the use of tempered distribution arguments. This is the counterpart of the work \cite{CLV}, where the case of even functions is treated.Comment: to appear in Const. Appro

    Detection and diversity of a putative novel heterogeneous polymorphic proline-glycine repeat (Pgr) protein in the footrot pathogen Dichelobacter nodosus

    Get PDF
    Dichelobacter nodosus, a Gram-negative anaerobic bacterium, is the essential causative agent of footrot in sheep. Currently, depending on the clinical presentation in the field, footrot is described as benign or virulent; D. nodosus strains have also been classified as benign or virulent, but this designation is not always consistent with clinical disease. The aim of this study was to determine the diversity of the pgr gene, which encodes a putative proline-glycine repeat protein (Pgr). The pgr gene was present in all 100 isolates of D. nodosus that were examined and, based on sequence analysis had two variants, pgrA and pgrB. In pgrA, there were two coding tandem repeat regions, R1 and R2: different strains had variable numbers of repeats within these regions. The R1 and R2 were absent from pgrB. Both variants were present in strains from Australia, Sweden and the UK, however, only pgrB was detected in isolates from Western Australia. The pgrA gene was detected in D. nodosus from tissue samples from two flocks in the UK with virulent footrot and only pgrB from a flock with no virulent or benign footrot for >10 years. Bioinformatic analysis of the putative PgrA protein indicated that it contained a collagen-like cell surface anchor motif. These results suggest that the pgr gene may be a useful molecular marker for epidemiological studies

    Evaluation of expression and function of the H+/myo-inositol transporter HMIT;

    Get PDF
    BACKGROUND: The phosphoinositide (PIns) signalling pathway regulates a series of neuronal processes, such as neurotransmitter release, that are thought to be altered in mood disorders. Furthermore, mood-stabilising drugs have been shown to inhibit key enzymes that regulate PIns production and alter neuronal growth cone morphology in an inositol-reversible manner. Here, we describe analyses of expression and function of the recently identified H+/myo-inositol transporter (HMIT) investigated as a potential regulator of PIns signalling. RESULTS: We show that HMIT is primarily a neuronal transporter widely expressed in the rat and human brain, with particularly high levels in the hippocampus and cortex, as shown by immunohistochemistry. The transporter is localised at the Golgi apparatus in primary cultured neurones. No HMIT-mediated electrophysiological responses were detected in rat brain neurones or slices; in addition, inositol transport and homeostasis were unaffected in HMIT targeted null-mutant mice. CONCLUSION: Together, these data do not support a role for HMIT as a neuronal plasma membrane inositol transporter, as previously proposed. However, we observed that HMIT can transport inositol triphosphate, indicating unanticipated intracellular functions for this transporter that may be relevant to mood control

    The steady state quantum statistics of a non-Markovian atom laser

    Full text link
    We present a fully quantum mechanical treatment of a single-mode atomic cavity with a pumping mechanism and an output coupling to a continuum of external modes. This system is a schematic description of an atom laser. In the dilute limit where atom-atom interactions are negligible, we have been able to solve this model without making the Born and Markov approximations. When coupling into free space, it is shown that for reasonable parameters there is a bound state which does not disperse, which means that there is no steady state. This bound state does not exist when gravity is included, and in that case the system reaches a steady state. We develop equations of motion for the two-time correlation in the presence of pumping and gravity in the output modes. We then calculate the steady-state output energy flux from the laser.Comment: 14 pages (twocloumn), 6 figure
    corecore