2,730 research outputs found
Development and geometry of isotropic and directional shrinkage crack patterns
We have studied shrinkage crack patterns which form when a thin layer of an
alumina/water slurry dries. Both isotropic and directional drying were studied.
The dynamics of the pattern formation process and the geometric properties of
the isotropic crack patterns are similar to what is expected from recent
models, assuming weak disorder. There is some evidence for a gradual increase
in disorder as the drying layer become thinner, but no sudden transition, in
contrast to what has been seen in previous experiments. The morphology of the
crack patterns is influenced by drying gradients and front propagation effects,
with sharp gradients having a strong orienting and ordering effect.Comment: 8 pages, 11 figures, 8 in jpg format, 3 in postscript. See also
http://mobydick.physics.utoronto.ca/mud.htm
A Collective Breaking of R-Parity
Supersymmetric theories with an R-parity generally yield a striking missing
energy signature, with cascade decays concluding in a neutralino that escapes
the detector. In theories where R-parity is broken the missing energy is
replaced with additional jets or leptons, often making traditional search
strategies ineffective. Such R-parity violation is very constrained, however,
by resulting B and L violating signals, requiring couplings so small that LSPs
will decay outside the detector in all but a few scenarios. In theories with
additional matter fields, R-parity can be broken collectively, such that
R-parity is not broken by any single coupling, but only by an ensemble of
couplings. Cascade decays can proceed normally, with each step only sensitive
to one or two couplings at a time, but B and L violation requires the full set,
yielding a highly suppressed constraint. s-channel production of new scalar
states, typically small for standard RPV, can be large when RPV is broken
collectively. While missing energy is absent, making these models difficult to
discover by traditional SUSY searches, they produce complicated many object
resonances (MORes), with many different possible numbers of jets and leptons.
We outline a simple model and discuss its discoverability at the LHC.Comment: 28 pages, 10 figure
Indirect Dark Matter Detection from Dwarf Satellites: Joint Expectations from Astrophysics and Supersymmetry
We present a general methodology for determining the gamma-ray flux from
annihilation of dark matter particles in Milky Way satellite galaxies, focusing
on two promising satellites as examples: Segue 1 and Draco. We use the
SuperBayeS code to explore the best-fitting regions of the Constrained Minimal
Supersymmetric Standard Model (CMSSM) parameter space, and an independent MCMC
analysis of the dark matter halo properties of the satellites using published
radial velocities. We present a formalism for determining the boost from halo
substructure in these galaxies and show that its value depends strongly on the
extrapolation of the concentration-mass (c(M)) relation for CDM subhalos down
to the minimum possible mass. We show that the preferred region for this
minimum halo mass within the CMSSM with neutralino dark matter is ~10^-9-10^-6
solar masses. For the boost model where the observed power-law c(M) relation is
extrapolated down to the minimum halo mass we find average boosts of about 20,
while the Bullock et al (2001) c(M) model results in boosts of order unity. We
estimate that for the power-law c(M) boost model and photon energies greater
than a GeV, the Fermi space-telescope has about 20% chance of detecting a dark
matter annihilation signal from Draco with signal-to-noise greater than 3 after
about 5 years of observation
Standard‐space atlas of the viscoelastic properties of the human brain
Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast-based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18–35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM-152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross-center comparisons
The Heavy Photon Search test detector
The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e+e− invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e+e− pairs requires the first layer of silicon sensors be placed only 10 cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab
Search for Yukawa Production of a Light Neutral Higgs Boson at LEP
Within a Two-Higgs-Doublet Model (2HDM) a search for a light Higgs boson in
the mass range of 4-12 GeV has been performed in the Yukawa process e+e- -> b
bbar A/h -> b bbar tau+tau-, using the data collected by the OPAL detector at
LEP between 1992 and 1995 in e+e- collisions at about 91 GeV centre-of-mass
energy. A likelihood selection is applied to separate background and signal.
The number of observed events is in good agreement with the expected
background. Within a CP-conserving 2HDM type II model the cross-section for
Yukawa production depends on xiAd = |tan beta| and xihd = |sin alpha/cos beta|
for the production of the CP-odd A and the CP-even h, respectively, where tan
beta is the ratio of the vacuum expectation values of the Higgs doublets and
alpha is the mixing angle between the neutral CP-even Higgs bosons. From our
data 95% C.L. upper limits are derived for xiAd within the range of 8.5 to 13.6
and for xihd between 8.2 to 13.7, depending on the mass of the Higgs boson,
assuming a branching fraction into tau+tau- of 100%. An interpretation of the
limits within a 2HDM type II model with Standard Model particle content is
given. These results impose constraints on several models that have been
proposed to explain the recent BNL measurement of the muon anomalous magnetic
moment.Comment: 24 pages, 9 figures, Submitted to Euro. Phys. J.
First Observation of CP Violation in B0->D(*)CP h0 Decays by a Combined Time-Dependent Analysis of BaBar and Belle Data
We report a measurement of the time-dependent CP asymmetry of B0->D(*)CP h0
decays, where the light neutral hadron h0 is a pi0, eta or omega meson, and the
neutral D meson is reconstructed in the CP eigenstates K+ K-, K0S pi0 or K0S
omega. The measurement is performed combining the final data samples collected
at the Y(4S) resonance by the BaBar and Belle experiments at the
asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The
data samples contain ( 471 +/- 3 ) x 10^6 BB pairs recorded by the BaBar
detector and ( 772 +/- 11 ) x 10^6, BB pairs recorded by the Belle detector. We
measure the CP asymmetry parameters -eta_f S = +0.66 +/- 0.10 (stat.) +/- 0.06
(syst.) and C = -0.02 +/- 0.07 (stat.) +/- 0.03 (syst.). These results
correspond to the first observation of CP violation in B0->D(*)CP h0 decays.
The hypothesis of no mixing-induced CP violation is excluded in these decays at
the level of 5.4 standard deviations.Comment: 9 pages, 2 figures, submitted to Physical Review Letter
Measurement of the Hadronic Cross-Section for the Scattering of Two Virtual Photons at LEP
The interaction of virtual photons is investigated using the reaction e+e- ->
e+e- hadrons based on data taken by the OPAL experiment at e+e- centre-of-mass
energies sqrt(s_ee)=189-209 GeV, for W>5 GeV and at an average Q^2 of 17.9
GeV^2. The measured cross-sections are compared to predictions of the Quark
Parton Model (QPM), to the Leading Order QCD Monte Carlo model PHOJET to the
NLO prediction for the reaction e+e- -> e+e-qqbar, and to BFKL calculations.
PHOJET, NLO e+e- -> e+e-qqbar, and QPM describe the data reasonably well,
whereas the cross-section predicted by a Leading Order BFKL calculation is too
large.Comment: 30 pages, 10 figures, Submitted to Eur.Phys.J.
Measurement of triple gauge boson couplings from WW production at LEP energies up to 189 GeV
A measurement of triple gauge boson couplings is presented, based on W-pair
data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass
energy of 189 GeV with an integrated luminosity of 183 pb^-1. After combining
with our previous measurements at centre-of-mass energies of 161-183 GeV we
obtain k_g=0.97 +0.20 -0.16, g_1^z=0.991 +0.060 -0.057 and lambda_g=-0.110
+0.058 -0.055, where the errors include both statistical and systematic
uncertainties and each coupling is determined by setting the other two
couplings to their SM values. These results are consistent with the Standard
Model expectations.Comment: 28 pages, 8 figures, submitted to Eur. Phys. J.
- …