207 research outputs found

    A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain

    Get PDF
    Raindrops interact with water vapour in ambient air while sedimenting from the cloud base to the ground. They constantly exchange water molecules with the environment and, in sub-saturated air, they evaporate partially or entirely. The latter of these below-cloud processes is important for predicting the resulting surface rainfall amount. It also influences the boundary layer profiles of temperature and moisture through evaporative latent cooling and humidity changes. However, despite its importance, it is very difficult to quantify this process from observations. Stable water isotopes provide such information, as they are influenced by both rain evaporation and equilibration (i.e. the exchange of isotopes between raindrops and ambient air). This study elucidates this option by introducing a novel interpretative framework for stable water isotope measurements performed simultaneously at high temporal resolution in both near-surface vapour and rain. We refer to this viewing device as the ΔδΔd-diagram, which shows the isotopic composition (δ2H, d-excess) of equilibrium vapour from precipitation samples relative to the ambient vapour. It is shown that this diagram facilitates the diagnosis of below-cloud processes and their effects on the isotopic composition of vapour and rain since equilibration and evaporation lead to different pathways in the two-dimensional phase space of the ΔδΔd-diagram, as investigated with a series of sensitivity experiments with an idealized below-cloud interaction model. The analysis of isotope measurements for a specific cold front in central Europe shows that below-cloud processes lead to distinct and temporally variable imprints on the isotope signal in surface rain. The influence of evaporation on this signal is particularly strong during periods with a weak precipitation rate. After the frontal passage, the near-surface atmospheric layer is characterized by higher relative humidity, which leads to weaker below-cloud evaporation. Additionally, a lower melting layer after the frontal passage reduces time for exchange between vapour and rain and leads to weaker equilibration. Measurements from four cold frontal events reveal a surprisingly similar slope of ΔdΔδ=−0.30 in the phase space, indicating a potentially characteristic signature of below-cloud processes for this type of rain event.publishedVersio

    Beyond immune escape:a variant surface glycoprotein causes suramin resistance in Trypanosoma brucei

    Get PDF
    Suramin is one of the first drugs developed in a medicinal chemistry program (Bayer, 1916), and it is still the treatment of choice for the hemolymphatic stage of African sleeping sickness caused by Trypanosoma brucei rhodesiense. Cellular uptake of suramin occurs by endocytosis, and reverse genetic studies with T. b. brucei have linked downregulation of the endocytic pathway to suramin resistance. Here we show that forward selection for suramin resistance in T. brucei spp. cultures is fast, highly reproducible and linked to antigenic variation. Bloodstream-form trypanosomes are covered by a dense coat of variant surface glycoprotein (VSG), which protects them from their mammalian hosts' immune defenses. Each T. brucei genome contains over 2000 different VSG genes, but only one is expressed at a time. An expression switch to one particular VSG, termed VSGSur , correlated with suramin resistance. Reintroduction of the originally expressed VSG gene in resistant T. brucei restored suramin susceptibility. This is the first report of a link between antigenic variation and drug resistance in African trypanosomes

    Assessing the Sampling Quality of a Low-Tech Low-Budget Volume-Based Rainfall Sampler for Stable Isotope Analysis

    Get PDF
    To better understand the small-scale variability of rainfall and its isotopic composition it is advantageous to utilize rain samplers which are at the same time low-cost, low-tech, robust, and precise with respect to the collected rainwater isotopic composition. We assessed whether a self-built version of the Kennedy sampler is able to collect rainwater consistently without mixing with antecedent collected water. We called the self-built sampler made from honey jars and silicon tubing the Zurich sequential sampler. Two laboratory experiments show that high rainfall intensities can be sampled and that the volume of water in a water sample originating from a different bottle was generally less than 1 ml. Rainwater was collected in 5 mm increments for stable isotope analysis using three (year 2011) and five (years 2015 and 2016) rain samplers in Zurich (Switzerland) during eleven rainfall events. The standard deviation of the total rainfall amounts between the different rain gauges was <1%. The standard deviation of δ18O and δ2H among the different sequential sampler bottles filled at the same time was generally <0.3‰ for δ18O and <2‰ for δ2H (8 out of 11 events). Larger standard deviations could be explained by leaking bottle(s) with subsequent mixing of water with different isotopic composition of at least one out of the five samplers. Our assessment shows that low-cost, low-tech rain samplers, when well maintained, can be used to collect sequential samples of rainfall for stable isotope analysis and are therefore suitable to study the spatio-temporal variability of the isotopic composition of rainfall.publishedVersio

    Interparticle Distance Variation in Semiconductor Nanoplatelet Stacks

    Get PDF
    In the large field of research on nanoplatelets (NPLs), their strong tendency to self-assemble into ordered stacks and the resulting changes in their properties are of great interest. The assembly reveals new characteristics such as the charge carrier transport through the NPL assembly or altered optical properties. In particular, a reduced distance should enhance the charge carrier transport due to higher electronic coupling of neighboring NPLs, and therefore, is the focus of this work. To modify the inter-particle distances, the straightforward method of ligand exchange is applied. Various CdSe and CdSe/CdX (hetero-) NPLs serve as building blocks, which not only display different material combinations but also different types of hetero-structures. The surface-to-surface distance between the stacked NPLs can be reduced to below 1 nm, thus, to less than the half compared to assemblies of pristine NPLs. Moreover, for certain NPLs stacking is only enabled by the ligand exchange. To characterize the ligand exchanges and to investigate the influences of the reduced distances, photo-electrochemical measurements, fluorescence spectroscopy, energy dispersive X-ray spectroscopy, nuclear magnetic resonance, and X-ray photoelectron spectroscopy are performed. It is possible to show higher photocurrents for smaller distances, indicating enhanced charge transport ability within those stacks

    Morphological Control Over Gel Structures of Mixed Semiconductor-Metal Nanoparticle Gel Networks with Multivalent Cations

    Get PDF
    In this work, the influence of two different types of cations on the gel formation and structure of mixed gel networks comprised of semiconductor (namely CdSe/CdS nanorods NR) and Au nanoparticles (NP) as well as on the respective monocomponent gels is investigated. Heteroassemblies built from colloidal building blocks are usually prepared by ligand removal or cross-linking, thus, both the surface chemistry and the destabilising agent play an essential role in the gelation process. Due to the diversity of the composition, morphology, and optical properties of the nanoparticles, a versatile route to fabricate functional heteroassemblies is of great demand. In the present work, the optics, morphology, and gelation mechanism of pure semiconductor and noble metal as well as their mixed nanoparticle gel networks are revealed. The influence of the gelation agents (bivalent and trivalent cations) on the structure-property correlation is elucidated by photoluminescence, X-ray photoelectron spectroscopy, and electron microscopy measurements. The selection of cations drastically influences the nano- and microstructure of the prepared gel network structures driven by the affinity of the cations to the ligands and the nanoparticle surface. This gelation technique provides a new platform to control the formation of porous assemblies based on semiconductor and metal nanoparticles

    Controlled Stark shifts in Er3+^{3+}-doped crystalline and amorphous waveguides for quantum state storage

    Full text link
    We present measurements of the linear Stark effect on the 4^{4}I15/2_{15/2} \to 4^{4}I13/2_{13/2} transition in an Er3+^{3+}-doped proton-exchanged LiNbO3_{3} crystalline waveguide and an Er3+^{3+}-doped silicate fiber. The measurements were made using spectral hole burning techniques at temperatures below 4 K. We measured an effective Stark coefficient (Δμeχ)/(h)=25±1(\Delta\mu_{e}\chi)/(h)=25\pm1kHz/Vcm1^{-1} in the crystalline waveguide and (Δμeˉχ)/(h)=15±1(\bar{\Delta\mu_{e}}\chi)/(h)=15\pm1kHz/Vcm1^{-1} in the silicate fiber. These results confirm the potential of Erbium doped waveguides for quantum state storage based on controlled reversible inhomogeneous broadening.Comment: 4 pages, 2 figures v2. typo in formula correcte

    Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs.

    Get PDF
    OBJECTIVES: Trypanosoma brucei drug transporters include the TbAT1/P2 aminopurine transporter and the high-affinity pentamidine transporter (HAPT1), but the genetic identity of HAPT1 is unknown. We recently reported that loss of T. brucei aquaglyceroporin 2 (TbAQP2) caused melarsoprol/pentamidine cross-resistance (MPXR) in these parasites and the current study aims to delineate the mechanism by which this occurs. METHODS: The TbAQP2 loci of isogenic pairs of drug-susceptible and MPXR strains of T. brucei subspecies were sequenced. Drug susceptibility profiles of trypanosome strains were correlated with expression of mutated TbAQP2 alleles. Pentamidine transport was studied in T. brucei subspecies expressing TbAQP2 variants. RESULTS: All MPXR strains examined contained TbAQP2 deletions or rearrangements, regardless of whether the strains were originally adapted in vitro or in vivo to arsenicals or to pentamidine. The MPXR strains and AQP2 knockout strains had lost HAPT1 activity. Reintroduction of TbAQP2 in MPXR trypanosomes restored susceptibility to the drugs and reinstated HAPT1 activity, but did not change the activity of TbAT1/P2. Expression of TbAQP2 sensitized Leishmania mexicana promastigotes 40-fold to pentamidine and >1000-fold to melaminophenyl arsenicals and induced a high-affinity pentamidine transport activity indistinguishable from HAPT1 by Km and inhibitor profile. Grafting the TbAQP2 selectivity filter amino acid residues onto a chimeric allele of AQP2 and AQP3 partly restored susceptibility to pentamidine and an arsenical. CONCLUSIONS: TbAQP2 mediates high-affinity uptake of pentamidine and melaminophenyl arsenicals in trypanosomes and TbAQP2 encodes the previously reported HAPT1 activity. This finding establishes TbAQP2 as an important drug transporter
    corecore