1,149 research outputs found

    A VOI-based 4D optimization method for the ion beam therapy of intrafractionally moving tumours

    Get PDF

    Confirmation of the tumour motion extraction method

    Get PDF

    Defensive responses to threat scenarios in Brazilians reproduce the pattern of Hawaiian Americans and non-human mammals

    Get PDF
    A former study with scenarios conducted in Hawaii has suggested that humans share with non-human mammals the same basic defensive strategies - risk assessment, freezing, defensive threat, defensive attack, and flight. The selection of the most adaptive strategy is strongly influenced by features of the threat stimulus - magnitude, escapability, distance, ambiguity, and availability of a hiding place. Aiming at verifying if these strategies would be consistent in a different culture, 12 defensive scenarios were translated into Portuguese and adapted to the Brazilian culture. The sample consisted of male and female undergraduate students divided into two groups: 76 students, who evaluated the five dimensions of each scenario and 248 medical students, who chose the most likely response for each scenario. In agreement with the findings from studies of non-human mammal species, the scenarios were able to elicit different defensive behavioral responses, depending on features of the threat. "Flight" was chosen as the most likely response in scenarios evaluated as an unambiguous and intense threat, but with an available route of escape, whereas "attack" was chosen in an unambiguous, intense and close dangerous situation without an escape route. Less urgent behaviors, such as "check out", were chosen in scenarios evaluated as less intense, more distant and more ambiguous. Moreover, the results from the Brazilian sample were similar to the results obtained in the original study with Hawaiian students. These data suggest that a basic repertoire of defensive strategies is conserved along the mammalian evolution because they share similar functional benefits in maintaining fitness.CNP

    Studying inter- and intrafraction motion mitigation with sequential 4DCTs of NSCLC patients

    Get PDF

    Governing Gene Drive Technologies:A Qualitative Interview Study

    Get PDF
    Background: Gene drive technologies (GDTs) bias the inheritance of a genetic element within a population of non-human organisms, promoting its progressive spread across this population. If successful, GDTs may be used to counter intractable problems such as vector-borne diseases. A key issue in the debate on GDTs relates to what governance is appropriate for these technologies. While governance mechanisms for GDTs are to a significant extent proposed and shaped by professional experts, the perspectives of these experts have not been explored in depth. Methods: A total of 33 GDT experts from different professional disciplines were interviewed to identify, better understand, and juxtapose their perspectives on GDT governance. The pseudonymized transcripts were analyzed thematically. Results: Three main themes were identified: (1) engagement of communities, stakeholders, and publics; (2) power dynamics, and (3) decision-making. There was broad consensus amongst respondents that it is important to engage communities, stakeholders, and publics. Nonetheless, respondents had diverging views on the reasons for doing so and the timing and design of engagement. Respondents also outlined complexities and challenges related to engagement. Moreover, they brought up the power dynamics that are present in GDT research. Respondents stressed the importance of preventing the recurrence of historical injustices and reflected on dilemmas regarding whether and to what extent (foreign) researchers can legitimately make demands regarding local governance. Finally, respondents had diverging views on whether decisions about GDTs should be made in the same way as decisions about other environmental interventions, and on the decision-making model that should be used to decide about GDT deployment. Conclusions: The insights obtained in this interview study give rise to recommendations for the design and evaluation of GDT governance. Moreover, these insights point to unresolved normative questions that need to be addressed to move from general commitments to concrete obligations

    Gate-Controlled Electron Spin Resonance in a GaAs/AlGaAs Heterostructure

    Full text link
    The electron spin resonance (ESR) of two-dimensional electrons is investigated in a gated GaAs/AlGaAs heterostructure. We found that the ESR resonance frequency can be turned by means of a gate voltage. The front and back gates of the heterostructure produce opposite g-factor shift, suggesting that electron g-factor is being electrostatically controlled by shifting the equilibrium position of the electron wave function from one epitaxial layer to another with different g-factors

    PelĂŠ, RomĂĄrio and Ronaldo: The Social Trajectories of Celebrity Politicians and the 2014 FIFA World Cup in Brazil

    Get PDF

    Inhibition of NAADP signalling on reperfusion protects the heart by preventing lethal calcium oscillations via two-pore channel 1 and opening of the mitochondrial permeability transition pore

    Get PDF
    Aims In the heart, a period of ischaemia followed by reperfusion evokes powerful cytosolic Ca2+ oscillations that can cause lethal cell injury. These signals represent attractive cardioprotective targets, but the underlying mechanisms of genesis are ill-defined. Here, we investigated the role of the second messenger nicotinic acid adenine dinucleotide phosphate (NAADP), which is known in several cell types to induce Ca2+ oscillations that initiate from acidic stores such as lysosomes, likely via two-pore channels (TPCs, TPC1 and 2). Methods and results An NAADP antagonist called Ned-K was developed by rational design based on a previously existing scaffold. Ned-K suppressed Ca2+ oscillations and dramatically protected cardiomyocytes from cell death in vitro after ischaemia and reoxygenation, preventing opening of the mitochondrial permeability transition pore. Ned-K profoundly decreased infarct size in mice in vivo. Transgenic mice lacking the endo-lysosomal TPC1 were also protected from injury. Conclusion NAADP signalling plays a major role in reperfusion-induced cell death and represents a potent pathway for protection against reperfusion injury

    Changes in Cross-Sectional Area of Spinal Canal and Vertebral Body Under 2 Years of Teriparatide Treatment: Results from the EUROFORS Study

    Get PDF
    The treatment of osteoporotic patients with teriparatide is associated with a significant increase in bone formation and gain of bone mass. The purpose of this post hoc analysis was to determine if the cross-sectional area (CSA) of the spinal canal and the vertebral body is affected by teriparatide treatment. Narrowing of the spinal canal might represent a safety problem, while widening of the vertebral CSA might improve mechanical stability. High-resolution computed tomography (HRCT) scans of vertebra T12 were obtained at baseline and after 6, 12, and 24 months of teriparatide treatment (20 μg/day) from 44 postmenopausal women with established osteoporosis participating in the prospective, randomized EUROFORS study. The CSA of the spinal canal did not decrease but increased marginally by 0.9% (2.6 mm2) over 24 months (P < 0.001), with a range from −0.5% (−2 mm2) to 3.1% (+8 mm2). Even when analyzing the spinal CSA on a slice-by-slice basis, no clinically relevant narrowing of the spinal canal was observed. For vertebral bodies, the CSA increased by 0.7% (5.7 mm2) over 24 months (P < 0.001), with a range from −0.4% (–3 mm2) to 1.6% (+14 mm2). Our data do not provide evidence for safety concerns regarding spinal canal narrowing. On the other hand, the increases observed for vertebral CSA apparently also only minimally contribute to the mechanical strengthening of the vertebral body under teriparatide treatment

    Heart beat modelling in a water and anthropomorphic phantom

    Get PDF
    • …
    corecore