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Aims In the heart, a period of ischaemia followed by reperfusion evokes powerful cytosolic Ca2+ oscillations that can cause
lethal cell injury. These signals represent attractive cardioprotective targets, but the underlying mechanisms of genesis
are ill-defined. Here, we investigated the role of the second messenger nicotinic acid adenine dinucleotide phosphate
(NAADP), which is known in several cell types to induce Ca2+ oscillations that initiate from acidic stores such as
lysosomes, likely via two-pore channels (TPCs, TPC1 and 2).

Methods
and results

An NAADP antagonist called Ned-K was developed by rational design based on a previously existing scaffold. Ned-K
suppressed Ca2+ oscillations and dramatically protected cardiomyocytes from cell death in vitro after ischaemia and
reoxygenation, preventing opening of the mitochondrial permeability transition pore. Ned-K profoundly decreased
infarct size in mice in vivo. Transgenic mice lacking the endo-lysosomal TPC1 were also protected from injury.

Conclusion NAADP signalling plays a major role in reperfusion-induced cell death and represents a potent pathway for protection
against reperfusion injury.
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1. Introduction
An interruption in blood supply to the myocardium, such as occurs
during myocardial infarction or during cardiopulmonary bypass, leads
to ischaemia which can cause irreversible injury. Restoration of blood
supply is essential to salvage the myocardium; however, this paradox-
ically results in further injury to the myocardium.1 Ischaemia and reper-
fusion cause major changes in intracellular ATP levels, redox state, pH,
[Ca2+], and oxidative stress—critical factors leading to opening
of the mitochondrial permeability transition pore (mPTP).2 – 4 This
non-selective pore on the inner mitochondrial membrane results in

mitochondrial depolarization and swelling, and inevitably necrotic cell
death.2,4 Chemical inhibition or genetic ablation of cyclophilin D
(cypD), a protein known to regulate mPTP opening, significantly
increases the resistance of the heart to ischaemia and reperfusion
injury.5,6

Despite its role in cell death, Ca2+ is an essential ion in the heart,
coupling electrical excitation to muscular contraction. During the car-
diac action potential, Ca2+ influx via the sarcolemmal L-type Ca2+

channels triggers Ca2+ release from the sarcoplasmic reticulum (SR)
via ryanodine receptors (RyRs). The resulting elevation of [Ca2+]c

stimulates cardiomyocyte contraction. In healthy cardiomyocytes,
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therefore, [Ca2+]c is very finely regulated via homeostatic mechanisms,
principally by buffering within the SR but also in other organelles such
as mitochondria and lysosomes.7,8 When ATP becomes depleted
during ischaemia, however, [Ca2+]c increases.9 – 11 Reperfusion is ne-
cessary to save the cells, but during the first few minutes of reperfusion,
Ca2+ is repeatedly released from the SR and pumped back in a futile
oscillatory cycle. If normal Ca2+ levels are not quickly restored, this
can result in hypercontracture and cell death.7,12,13 The Ca2+ oscilla-
tions are caused by cycles of SR Ca2+ release and re-uptake, leading
to mitochondrial Ca2+ overload and mPTP opening. Consequently,
drugs such as ryanodine that inhibit the RyR prevent these oscillations,
and protect against mPTP opening and cell death.12,14 Studies in cardi-
omyocytes have led to the proposal that the SR–mitochondrial inter-
action is a critical target of reperfusion injury.7,15 Using multiphoton
microscopy of the intact heart, we have recently shown that slow
[Ca2+]c waves occur in cardiomyocytes during reperfusion, and that
these precede mPTP opening.3

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most
potent Ca2+-mobilizing second messenger identified to date.16 Much
evidence suggests that NAADP triggers Ca2+ release from acidic orga-
nelles such as lysosomes.8,16– 22 It is therefore distinct from the other
known second messengers, inositol triphosphate (IP3, which stimulates
Ca2+ release from the ER/SR via IP3 receptors), and cyclic ADP ribose
(which stimulates Ca2+ release from the SR via the RyR). The Ca2+-
mobilizing properties of NAADP were initially identified in sea urchin
eggs.23 Subsequent data have shown that NAADP can stimulate Ca2+

oscillations in diverse mammalian cell types, including pancreatic beta
cells, smooth muscle, and endothelium.20,24 – 26 Two-pore channels
(TPC1 and TPC2 in mammals) are localized to endo-lysosomal mem-
branes, and have been implicated in the release of lysosomal Ca2+ in
response to NAADP,21,27,28 although their native ionic permeability
is controversial.29,30

Since the identification of NAADP receptors in the heart over 10
years ago,31 a role of NAADP in the cardiac inotropic response has
gradually been revealed. Although NAADP does not appear to be
involved in baseline cardiomyocyte contraction, there is evidence
that it is involved in the increased Ca2+ transient and contraction force
in response to isoproterenol.8 Delivery of NAADP into resting primary
cardiomyocytes induces Ca2+ release from lysosomes, and evokes
slow, cytosolic Ca2+ waves reminiscent of those we previously ob-
served in the intact heart during reperfusion.3,8,32 Higher concentra-
tions of NAADP also triggered spontaneous diastolic Ca2+ waves.32

Significantly, administration of an inhibitor of NAADP signalling sup-
pressed diastolic Ca2+ waves and also prevented isoproterenol-
induced arrhythmias in mice.32 Diverse stimuli can increase NAADP
within seconds, whereas cardiac NAADP levels were increased 5 min
after b-adrenergic stimulation.8 Recently, a cell-permeable, small-
molecule inhibitor of NAADP signalling was identified in a chemical
screen and shown to be effective at nanomolar concentrations in vitro.17

The compound, Ned-19, eliminated glucose-stimulated Ca2+ oscilla-
tions in mouse pancreatic beta cells.17 Ned-19 similarly inhibited
Ca2+ oscillations in other tissues such as uterine smooth muscle
(stimulated with oxytocin)24 and pulmonary arterial myocytes (stimu-
lated with endothelin-1).18

As reperfusion-induced Ca2+ oscillations lead to mPTP opening and
irreversible cell injury, in combination with other factors present at
reperfusion, they represent an important potential cardioprotective
target. However, the use of canonical Ca2+-channel inhibitors in this
approach is complicated by the essential role of Ca2+ in cardiac

contraction. Given the role of NAADP in the generation of Ca2+ oscil-
lations in diverse systems including cardiac arrhythmia, we reasoned
that NAADP signalling may also play a role in the generation of
reperfusion-induced Ca2+ oscillations that lead to lethal injury. Using
a chemically modified form of Ned-19 called Ned-K, we have demon-
strated that inhibition of NAADP-dependent Ca2+ oscillations resulted
in cardioprotection in both an in vitro cell-based assay and an in vivo
model of ischaemia and reperfusion. Experiments demonstrating that
TPC1 knockout mice were similarly protected against ischaemia and
reperfusion injury validated the NAADP signalling pathway as a target
for cardioprotection. Thus, inhibition of NAADP-stimulated Ca2+

oscillations represents a viable cardioprotective strategy which may
have minimal effects on regular cardiac contraction.

2. Methods
Methods are described in detail in Supplementary material online.

2.1 Animal experiments and cardiomyocyte
isolation
All animals received humane care in accordance with the United Kingdom
Home Office Guide on the Operation of Animal (Scientific Procedures)
Act of 1986. The investigation conforms to the guidelines from Directive
2010/63/EU of the European Parliament on the protection of animals
used for scientific purposes or the NIH guidelines. Male Sprague–Dawley
rats were anaesthetized by i.p. injection of 160 mg/kg pentobarbitone.
Male C57BL/6J and TPC1 knockout mice33,34 were anaesthetized by i.p.
injection (0.01 mL/g) of a solution containing ketamine 10 mg/mL, xylazine
2 mg/mL, and atropine 0.06 mg/mL. Adequacy of anaesthesia was moni-
tored by pedal response and breathing rate. Animals were euthanized by
severing of the aorta. The in vivo model of myocardial infarction was per-
formed in mice using 30 min ischaemia followed by 120 min reperfusion.
Drugs were administered i.v. 5 min before reperfusion. Adult rat ventricular
cardiomyocytes were prepared by standard methods.35

2.2 mPTP assay
mPTP opening was induced in a previously described model of oxidative
stress in which cardiomyocytes loaded for 15 min with 5 mM tetra-methyl
rhodamine methyl ester (TMRM) are scanned using the 543 nm laser line of
a confocal microscope, generating reactive oxygen species (ROS).35– 38 The
time to mitochondrial depolarization provides an index of mPTP sensitivity
to opening.

2.3 Mitochondrial swelling assay
Mitochondrial swelling was assessed by measuring the absorbance of
the mitochondrial suspension (0.5 mg/mL) at 520 nm after the addition
of 500 mM free Ca2+.

2.4 Confocal imaging of Ca21 sparks, transients,
and oscillations
To detect Ca2+ sparks and transients, cardiomyocytes were loaded with
the fluorescent dye Fluo4-AM, 5 mmol/L for 30 min. Rapid line scans
were performed (three line scans per cell at different regions of the cell)
using the HeNe 488 nm laser of an Leica SP5 confocal microscope. Ca2+

spark frequency was determined using ImageJ with the ‘Sparkmaster’ plugin.
Ca2+ transients were stimulated by electrical field stimulation with
platinum electrodes (square pulses, 1 Hz, 1 ms, 5 V/cm). Addition of
10 mmol/L-Caffeine was used to trigger Ca2+ release from the SR and
measure SR Ca2+ content. Cells were subjected to simulated ischaemia
by incubating in a glucose-free, anoxic buffer (pH 6.4), before reoxygena-
tion in normoxic buffer. Cell death was determined by staining with propi-
dium iodide (PI).

S.M. Davidson et al.358
by guest on January 12, 2016

D
ow

nloaded from
 

http://cardiovascres.oxfordjournals.org/lookup/suppl/doi:10.1093/cvr/cvv226/-/DC1


2.5 Chemical synthesis
The trans-form of Ned-19 was synthesized as described previously.13 The
synthesis of Ned-K is described in Supplementary material online.

2.6 Statistics
All values are expressed as mean+ SEM. Data were analysed by one-way
ANOVA followed, where significant, by post hoc analysis using Dunnett’s
test for comparisons solely against control values, or Tukey’s test for
multiple comparisons.

3. Results
Lysosomes are Ca2+-containing acidic organelles.39 Cardiomyocytes
contain abundant lysosomes, as detected by staining with the fluorescent
lysosomotropic dye lysosensor green (Figure 1A). Although rhod2-AM is
typically used as a probe of mitochondrial Ca2+, it also accumulates in
lysosomes as has been previously noted.40 There was a high degree of
overlap between lysosensor and rhod2-AM fluorescence (Figure 1A),
indicating that most of the lysosomes in cardiomyocytes contain Ca2+.
Sequestration of Ca2+ in lysosomes depends on their low luminal pH.
Consequently, treatment of cells with bafilomycin A, an inhibitor of vacu-
olar H+-ATPases,41 resulted in gradual loss of both the pH-dependent,
lysosensor probe, and rhod2 fluorescence from the lysosomes
(Figure 1B). Pretreatment with glycyl-l-phenylalanine-beta-naphthylamide
(GPN), which selectively permeabilizes lysosomes by osmotic lysis, also
caused gradual disappearance of lysosensor green staining (Figure 1C), in
parallel with loss of Rhod-2 fluorescence. Interestingly, GPN also caused
a transient increase in the frequency of spontaneous Ca2+ sparks

(see Supplementary material online, Figure S1). Thus, lysosomes contain
Ca2+ and are a potential source of Ca2+ release in ventricular
cardiomyocytes.

Next, with the aim of improving the biological effectiveness and se-
lectivity of Ned-19, we developed a new analogue of Ned-19, in which
the fluoride was replaced with a cyano group (Figure 1D). This modifi-
cation improved its cLogP value, a measure of aqueous solubility calcu-
lated by the Cresset Fieldview System, and its topological polar surface
area (TPSA), (Ned-19 cLogP ¼ 4.6, TPSA ¼ 80.8; Ned-K cLogP ¼
4.05, TPSA ¼ 105). Indeed, this new compound, which we called
Ned-K, is noticeably more soluble than Ned-19, and it was possible
to dissolve it at concentrations up to 300 mmol/L in stock solutions
of DMSO, compared with a maximal limit of 100 mmol/L solutions
of Ned-19. We compared the potency of Ned-K with Ned-19 using
the sea urchin egg homogenate assay system that was used in the ori-
ginal characterization of Ned-19.17 Addition of NAADP to this system
causes a rapid release of Ca2+ from acidic organelles, and compounds
such as Ned-19 inhibit this NAADP-stimulated Ca2+ release. Accord-
ing to this assay, Ned-K retained an almost identical inhibitory capacity
as Ned-19 in vitro (Figure 1E).

Since lysosomal Ca2+ triggers ER/SR-based Ca2+ oscillations in vari-
ous cell types, we investigated whether inhibition of NAADP signalling
would prevent the Ca2+ oscillations which occur at reperfusion and
lead to mPTP opening and cell death.15,42 First, we examined the
changes in [Ca2+]c that occur in cardiomyocytes during simulated
ischaemia and reperfusion (sIR). Adult rat cardiomyocytes were loaded
with the fluorescent Ca2+ sensor, Fluo4-AM, and imaged during a
period of 60 min simulated ischaemia followed by reoxygenation for

Figure 1 Distribution of lysosomal Ca2+ stores in cardiomyocytes and description of Ned-19 and Ned-K. (A) Primary rat cardiomyocytes contain
abundant lysosomes distributed throughout the cell, many of which contain Ca2+ (e.g. arrowheads), as visible in a projected Z-stack of a cardiomyocyte
stained with lysosensor green and the Ca2+ sensor rhod2-AM. Bar, 10 mm. (B) Treatment with 100 nmol/L of bafilomycin A, an inhibitor of vacuolar
H+-ATPases, caused a gradual loss of both lysosensor and rhod2 fluorescence from lysosomes (arrowheads). Bar, 10 mm. n ¼ 3 independent experi-
ments. (C) Treatment with 10 mM GPN causes a decrease in the number of lysosomes per cell detected with lysosensor within 10 min. n ¼ 3 independ-
ent experiments with nine cells. (D) The chemical structures of Ned-19 and Ned-K. (E) Inhibition curves of Ned-19 and Ned-K in an assay of
NAADP-stimulated Ca2+ release using sea urchin egg homogenates (see Supplementary material online, Methods). n ¼ 3 independent measurements
per group.
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20 min (sIR) on the stage of a confocal microscope. Before ischaemia,
[Ca2+]c was stable except for occasional spikes during spontaneous
cellular contractions, which occur in unstimulated cultures
(Figure 2A). As expected, [Ca2+]c had risen markedly after �40 min
simulated ischaemia (Figure 2B). After reoxygenation, most cells under-
went rapid periodic contractions corresponding with large [Ca2+]c

oscillations (Figure 2C and H ). The frequency of these Ca2+ oscillations
reached a maximum at �3 min, then decreased gradually over the next
7–12 min (Figure 2C and H ), during which time some cells underwent
Ca2+ overload and hypercontracture (indicating lethal injury), and
others regained [Ca2+]c homeostasis, recovering normal rod-shaped
morphology.

We evaluated the potential of the Ned drugs to inhibit [Ca2+]c

oscillations during reoxygenation. Ned-19 (10 mmol/L) decreased the
frequency of [Ca2+]c oscillations (Figure 2D and H ). The chemical

modification in Ned-K appears to greatly improve its effectiveness at
preventing Ca2+ oscillations in this model, since 10 mmol/L of Ned-K
almost completely eliminated [Ca2+]c oscillations (Figure 2E and H ),
and 0.1 mmol/L of Ned-K was as effective at suppressing [Ca2+]c levels
as 10 mmol/L of Ned-19 (Figure 2D, F, and H ). The average frequency of
Ca2+ oscillations in each cell was analysed statistically (see Methods;
Figure 2G) and was found to be significantly suppressed by the treat-
ments (P , 0.001, n ¼ 3). These results demonstrate that Ned-19
and, particularly, Ned-K were effective at dampening sIR-induced
Ca2+ oscillations in cardiomyocytes.

To determine whether inhibition of NAADP-stimulated Ca2+ oscil-
lations corresponded to protection against ischaemia and reperfusion
injury, the cells were stained with vital dye PI at the end of the experi-
ment, and the percentage of dead vs. live, rod-shaped cells was scored.
sIR significantly increased the percentage of dead cells to 49+ 5%

Figure 2 Primary cardiomyocytes subjected to simulated ischaemia and reoxygenation in vitro exhibit large Ca2+ oscillations at reoxygenation, which
are suppressed in the presence of Ned-K or Ned-19. (A) Primary cardiomyocytes loaded with a Ca2+-sensitive fluorescent indicator, Fluo4-AM, exhib-
ited occasional Ca2+ fluctuations during stabilization. (B) [Ca2+] increased after 40 min hypoxia. (C) Large Ca2+ oscillations occurred as [Ca2+] returned
to baseline during reoxygenation. (D and F) In the presence of 10 mmol/L of Ned-19 (D), 10 mmol/L of Ned-K (E), or 0.1 mmol/L of Ned-K (F), Ca2+

oscillations during reoxygenation were suppressed. (G) Compared with stabilization, the average number of Ca2+ oscillations was significantly increased
during reoxygenation, whereas Ca2+ oscillations were significantly decreased compared with vehicle by 0.1 mmol/L of Ned-K or 10 mmol/L of Ned-19,
and even further suppressed by 10 mmol/L of Ned-K (P , 0.05 vs. 0.1 mmol/L of Ned-K; n ¼ 3 independent experiments with 26–35 cells per group).
(H) A smoothed chart of the frequency of Ca2+ oscillations that occurred over time during early reoxygenation. ***P , 0.001, *P , 0.05.
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compared with 17+ 3% in normoxic buffer (P , 0.001, n ¼ 4; Figure 3).
Treatment with 10 mmol/L of Ned-19 or 10 mmol/L of Ned-K at reox-
ygenation significantly decreased cell death after sIR to 22+ 1 and
16+1%, respectively (both P , 0.01 vs. vehicle). Ned-K (0.1 mmol/L)
caused a slight decrease in cardiomyocyte death (34+ 6%), which
did not reach significance. We reasoned that if protection occurs via
inhibition of lysosomal Ca2+ release, then an agent that eliminates lyso-
somal Ca2+ would be similarly protective. Indeed, pretreatment of cells
with GPN to permeabilize lysosomes, followed by 30 min washout be-
fore sIR, decreased cell death to 25+5% (P , 0.05 vs. vehicle). Brief
pretreatment of cells with GPN also suppressed [Ca2+]c oscillations
at reperfusion to a similar degree (see Supplementary material online,
Figure S2A–D).

To confirm that the protection and suppression of Ca2+ oscillations
observed with Ned-19 and Ned-K was not due to off-target inhibition
of the RyR directly, we evaluated their effect on the frequency of spon-
taneous Ca2+ sparks, and on efficiency of excitation–contraction
coupling. Ca2+ sparks occur spontaneously in unstimulated primary
cardiomyocytes primarily as a consequence of spontaneous Ca2+

release from the SR via the RyR,43 as demonstrated by the complete
inhibition of Ca2+ sparks by ryanodine (Ry; Figure 4A). The frequency
of Ca2+ sparks in cardiomyocytes treated with different concentrations
of Ned-K was not significantly altered, even at concentrations up to
300 mmol/L (Figure 4A). However, at the highest concentration used
(100 mmol/L), Ned-19 inhibited Ca2+ spark frequency from 2.7+
0.4 Ca2+ sparks/s in controls to 0.9+ 0.2 Ca2+ sparks/s (P , 0.01,
n ¼ 3; Figure 4A). Similarly, while Ca2+ transient amplitude in response
to electrical pacing was unaltered by the presence of 100 mmol/L of
Ned-K (Figure 4B), their amplitude was significantly decreased by

100 mmol/L of Ned-19 (Figure 4B), with Ca2+ transients completely
eliminated in 30% of cells analysed. These results suggested that
100 mmol/L of Ned-19 affects SR Ca2+ handling either by inhibiting
the RyR or decreasing SR Ca2+ content, and subsequent experiments
measuring the release of SR Ca2+ by treatment with caffeine indicated
that the latter is the case (see Supplementary material online, Figure S3).
Ned-K, however, appears to be more specific as it has no such direct
effect on SR Ca2+ handling.

Next, we investigated whether Ned-19 or Ned-K would protect
against cardiac ischaemia and reperfusion injury in an in vivo mouse
model of ischaemia and reperfusion injury. The left anterior descending
coronary artery of anaesthetized mice was occluded for 30 min, fol-
lowed by a period of reperfusion for 2 h, after which time the heart
was removed and the extent of infarction in the area at risk measured
by tetrazolium chloride staining and Evans blue. In control mice, in-
jected with the vehicle 5 min before reperfusion, infarct size measured
51+ 9% (n ¼ 5) of the ischaemic area ‘at risk’ (Figure 5A and see
Supplementary material online, Figure S4). The infarct size in mice in-
jected with Ned-19 was slightly lower but not significantly different
from controls (41+ 5%, n ¼ 6; Figure 5A). Injection of Ned-K, how-
ever, caused a significant reduction in infarct size (25+ 3%, n ¼ 5;
P , 0.05; Figure 5A).

We tested whether genetic suppression of the NAADP signalling
pathway would be similarly cardioprotective. TPC1 has been proposed
to form a Ca2+ channel in the lysosomal membrane that is regulated by
NAADP.21,27 We therefore probed the role of TPC1 in injury using
mice lacking TPC1.33 TPC1 knockout mice have no obvious phenotype,
but after subjecting them to experimental myocardial infarction they
were revealed to be protected against cardiac ischaemia and reperfu-
sion, with infarct sizes of 32+ 4% of the area at risk, compared with
51+ 5% of the area at risk in littermate wild-type controls (n ¼ 4–5,
P , 0.05; Figure 5B). Taken together, the data in Figure 5A and B show
that both chemical and molecular inhibition of NAADP signalling in vivo
reduces ischaemia and reperfusion injury.

To test whether ischaemia and reperfusion injury was associated
with changes in NAADP levels, mouse hearts were isolated and
perfused using a Langendorff apparatus. An improved enzymatic cycling
assay44 was used to quantify NAADP in hearts subjected to global is-
chaemia and reperfusion. NAADP levels in control perfused mouse
hearts were 8.3+2.0 fmol mg21 protein (Figure 5C). NAADP was sig-
nificantly reduced after a period of 30 min global ischaemia to 2.0+
0.3 fmol mg21. Upon reperfusion, NAADP levels recovered, though
they did not increase above baseline levels. However, these data
show that NAADP levels are dynamically regulated during ischaemia
and reperfusion further supporting a role for NAADP signalling in
injury at reperfusion.

Finally, we investigated the mechanism of cardioprotection by Ned-K
by examining whether it could prevent opening of the mPTP. We used a
previously validated model,45,46 in which primary adult cardiomyocytes
are loaded with the fluorescent dye TMRM, which accumulates in mito-
chondria and generates ROS in response to confocal laser-induced
phototoxicity. This results in Ca2+ overload culminating in mPTP open-
ing and cell death.46 We measured the time taken under continual con-
focal laser scanning before mPTP opening occurs, visualized by the rapid
redistribution of TMRM from the mitochondria to the cytosol, and by an
abrupt increase in fluorescence as the dye dequenches in the cytosol
(Figure 6A). As a positive control, ciclosporin A (CsA) significantly de-
layed the time to mPTP opening compared with vehicle by 55+ 7%
(n ¼ 4, P , 0.01; Figure 6B). There was a significant delay in mPTP

Figure 3 sIR increases the percentage of dead primary adult cardi-
omyocytes (i.e. hypercontracted and PI+ve). Treatment with
10 mmol/L of Ned-K or 10 mmol/L of Ned-19 significantly decreased
the percentage of dead cells. Pretreatment of cells with 10 mmol/L of
GPN, which eliminates lysosomes, was also protective. *P , 0.05;
**P , 0.01; ***P , 0.001; n ¼ 4 independent experiments with
700–1500 cells per group.
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opening in the presence of 10 or 100 mmol/L of Ned-K (Figure 6B) or
Ned-19 (see Supplementary material online, Figure S5). In this model,
ROS exposure caused a 2.4-fold increase in [Ca2+]cyto, detected using
Fluo4-AM (see Supplementary material online, Figure S6), and this
increase was suppressed in the presence of 10 mmol/L of ryanodine
or, 1–100 mmol/L of Ned-K (Figure 6C). Since this is the first time that
a link between Ca2+ release from acidic stores and mPTP opening has
been demonstrated, we performed a further experiment in which cardi-
omyocytes were pretreated for 30 min with bafilomycin A to assess
whether this would have any effect on mPTP opening. In line with our
hypothesis, pretreatment with 100 nM bafilomycin A significantly
delayed the time to mPTP opening by 41+ 25% (P , 0.05, n ¼ 4;
Figure 6B). The delay in mPTP opening was not due to a direct effect
of the Ned drugs on the mPTP, since Ca2+-induced swelling of isolated
mitochondria was unaffected by their presence (Figure 6D).

4. Discussion
Our results demonstrate that reperfusion-induced Ca2+ oscillations in
primary adult cardiomyocytes can be suppressed by treatment with

Ned-19, or, more effectively, with an improved form of Ned-19 called
Ned-K. Although Ned-19 decreased SR Ca2+ content at higher con-
centrations, Ned-K had no effect on SR Ca2+ content, and did not alter
spontaneous Ca2+ spark frequency or electrically stimulated Ca2+

transient amplitude. While both drugs protected primary cardiomyo-
cytes against sIR injury in vitro, Ned-K was uniquely protective against
IR injury in vivo, in accordance with its improved pharmacological
properties. Genetic deletion of TPC1 was similarly protective in
mice. The protective effects of Ned-K were mirrored in vitro by treat-
ment with GPN to eliminate lysosomes. Mechanistically, protection is
likely via prevention of reperfusion-induced Ca2+ oscillations that
trigger mPTP opening in cardiomyocytes.

The mechanism of action of NAADP is not entirely clear. Increasing
evidence supports a ‘trigger mechanism’ in which NAADP causes
release of Ca2+ from lysosomes which then triggers SR/ER Ca2+

release,19,47–49 in much the same way as sarcolemmal Ca2+ entry trig-
gers SR Ca2+ release during excitation–contraction coupling.47 Indeed,
in recent years, lysosomes have been gaining attention, with the growing
realization that their function extends beyond the ‘garbage disposal’ role
in protein degradation originally ascribed to them. They are now

Figure 4 Ned-19 but not Ned-K adversely affected spontaneous SR Ca2+ sparks and pacing-induced Ca2+ transients in confocal line scans of cardiomyo-
cytes loaded with fluo4-AM. (A) The frequency of Ca2+ sparks in the presence of Ned-19 or Ned-K (n ¼ 14–16 cells). Ryanodine (Ry, 10 mmol/L) eliminated
Ca2+ sparks (n ¼ 3 independent experiments with 10–30 cells per group). Representative line scans are shown. **P , 0.01 vs. vehicle. (B) The amplitude of
electrically stimulated Ca2+ transients (DF/F0) was significantly decreased by 100 mmol/L of Ned-19. In contrast, Ned-K had no effect. Representative line
scans are shown, with traces of Ca2+ transients indicated below. **P , 0.01, ***P , 0.001; n ¼ 6 independent experiments with 30–40 cells per group.
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recognized as an important store of Ca2+, containing �400–600 mmol/L
in macrophages, and �550 mmol/L in fibroblasts.25,39 Our observation
that pretreatment of cardiomyocytes with bafilomycin A to deplete
lysosomal Ca2+, both delayed mPTP opening and protected against
sIR, supports a mechanism in which NAADP stimulates the release
of lysosomal Ca2+, which then triggers Ca2+ oscillations during
reperfusion.

Interestingly, there was a significant reduction in total cardiac
NAADP content after a period of 30 min global ischaemia which re-
turned to basal levels by 5 min reperfusion. We speculate that oxida-
tion of the lysosomal Ca2+ channel during reperfusion may sensitize
it to NAADP, in a manner similar to the redox regulation of RyR2.50

We have previously shown that intracellular oxidation and cytosolic
Ca2+ overload occur together in highly localized regions during reper-
fusion of the myocardium, leading to mPTP opening.3

Reperfusion-induced Ca2+ oscillations are caused by the cyclic
release and uptake of Ca2+ from the SR. While we have shown that
inhibition of lysosomal release channels reduces these oscillations,
other mechanisms could affect Ca2+ SR load and triggering of SR
Ca2+ release during ischaemia or reperfusion, such as ATP depletion
which prevents Ca2+ pumps from functioning. Other transporters,
such as the plasmalemmal Na+/Ca2+ exchanger, contribute indirectly
to Ca2+ oscillations by increasing cytosolic Ca2+ overload during
reperfusion.51,52 Notably, in these studies, the complete absence of
extracellular Ca2+ during reperfusion only reduced the oscillation
frequency by �50%,51 which reflects the fact that internal Ca2+

sources must contribute to the oscillations.
Some differences were observed between Ned-19 and Ned-K,

which may be ascribed to the changes in chemical structure. Ned-19
was previously identified in a virtual screen using NAADP as the query
ligand. Using the sea urchin egg homogenate assay, it was verified as

inhibiting NAADP-stimulated Ca2+ release activity. Similarly, Ned-19
inhibited NAADP-induced Ca2+ release in mouse pancreatic beta cells,
and reduced glucose-induced Ca2+ increase in islets. By replacing the
fluoride in Ned-19 with a cyano group in Ned-K (Figure 1), we im-
proved its cLogP value from 4.6 to 4.05. Although the change in cLogP
value may appear marginal, this is a tangible outcome given that values
are logarithmic. The TPSA is a measure of the polar contribution
of groups such as O, N, and –CN and is related to how hydrated a
molecule can become in aqueous environments. This value was
improved from 80.8 in Ned-19 to 105 in Ned-K. More importantly, it
seems that the receptor sites or ion channels involved in cardioprotec-
tion may have water molecules that can bridge between the peptide
residues and the cyano group in Ned-K.

Opening of the mPTP is a major step on the path to cell necrosis and IR
injury, as shown by experiments with mice lacking the cypD component
of the mPTP or treated with CsA, which binds to and inhibits cypD.1,2,53

Given that NAADP stimulates Ca2+ oscillations, and Ca2+ oscillations
cause mitochondrial Ca2+ overload and mPTP opening, we hypothesized
that the mechanism of protection of NAADP inhibitors would be via in-
hibition of the mPTP. We used a model of ROS-induced mPTP opening in
primary cardiomyocytes. Ca2+ was shown to increase in this model and
contribute to mPTP opening. The involvement of lysosomes in this model
was confirmed by the delay in mPTP opening observed after pretreat-
ment with bafilomycin A to empty acidic stores (Figure 6B). In accordance
with our hypothesis, we found that Ned-19 and Ned-K inhibited mPTP
opening in cells (Figure 6B), but that this effect was indirect, since they
did not prevent Ca2+-induced swelling in isolated mitochondria
(Figure 6D). The mPTP represents a common end target of many pharma-
cological cardioprotective agents, although often the exact mechanism by
which they prevent mPTP opening is not known.35,54 It may be interesting
to evaluate whether any of these agents affect lysosomal Ca2+ release.

Figure 5 Evaluation of cardioprotection in an in vivo model of ischaemia and reperfusion. (A) Ned-K, but not Ned-19 (administered i.v. to mice 5 min
before reperfusion), significantly decreased myocardial infarct size relative to area at risk. *P , 0.05; n ¼ 5–6 per group. (B) Infarct size relative to area at
risk was significantly decreased in mice lacking TPC1. See Supplementary material online, Figure S4 for representative heart sections after tetrazolium
staining. *P , 0.05; n ¼ 4–5 per group. (C) NAADP levels in hearts subject to 30 min normal perfusion (con), ischaemia (Isch), or ischaemia followed by
reperfusion for 5 or 10 min. **P , 0.01, ***P , 0.001; n ¼ 3 hearts per group.
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Despite Ned-19 and Ned-K having similar activities in an in vitro, sea
urchin egg homogenate assay of NAADP inhibition, only Ned-K was
found to be cardioprotective in vivo. The exact reason for this difference
is not known, but may be related to differences in pharmacokinetic pro-
file. An alternative possibility is that Ned-19 has an additional detrimen-
tal off-target effect—perhaps one related to the effect it was observed
to have in vitro on depleting SR Ca2+. We attempted to measure tissue
content of Ned compounds by HPLC after administration in vivo, but
the levels were at or below the lower limit of detection. A further limi-
tation of the study is that we did not test cardioprotection of Ned-K in
the TPC1 knockout mice, which would have helped to confirm its
mechanism of action.

Deletion of TPC1 protected against ischaemia and reperfusion
injury, suggesting that it is functionally important in the ventricular

myocardium. Much evidence has accumulated recently identifying
TPCs as NAADP-regulated Ca2+-permeable channels.8,16 – 22,28

NAADP-mediated Ca2+ signals are thus potentiated when TPCs are
overexpressed and inhibited by siRNA, gene knockout, and dominant-
negative TPC constructs (reviewed in Hooper and Patel48). In two
thorough, but highly controversial publications, data have been pre-
sented indicating that TPCs are not Ca2+ channels, but rather Na+-
selective ion channels that are insensitive to NAADP and instead acti-
vated by the phosphoinositide PI(3,5)P2 and ATP depletion.29,55 These
discrepancies have been partly reconciled by a recent study which de-
fined ionic conditions uncovering co-regulation of TPCs by NAADP,
PI(3,5)P2, and ATP.56 Thus, during ischaemia, ATP depletion might con-
tribute to activation of TPCs by NAADP and/or PI(3,5)P2. Further
work, however, is required to determine whether NAADP-dependent

Figure 6 Ned-K increased the resistance of the mPTP to opening in response to oxidative stress. (A) Confocal images demonstrating the model in
which mPTP opening leads to a de-quench wave of fluorescence across the cardiomyocyte. (B) The time to mPTP opening was assessed in cells exposed
to oxidative stress after treatment with the indicated drugs. Ned-K delayed mPTP opening, as did CsA, an inhibitor of the mPTP. Emptying of acidic stores
with 100 nmol/L of bafilomycin A (Baf) also delayed mPTP opening. n ¼ 4 independent experiments with 18–46 cells per group. *P , 0.05, **P , 0.01,
vs. vehicle control. (C) Ca2+ increased during the mPTP assay, and this was blunted by 10 mmol/L of ryanodine (‘Ry’), or Ned-K (n ¼ 4 independent
experiments). (D) Ned-K (10 mmol/L) did not directly affect the Ca2+ threshold for mPTP opening in isolated mitochondria when compared with
the mPTP inhibitor, 0.2 mmol/L of CsA. n ¼ 6 independent experiments.
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Ca2+ oscillations reported here are a direct consequence of Ca2+ flux
through TPCs. Nevertheless, recent pharmacological57 and genetic58,59

approaches reaffirm the importance of TPCs in NAADP-mediated
Ca2+ release.28 In support, both NAADP antagonism and TPC1
knockout afford protection against reperfusion injury highlighting the
therapeutic potential of this pathway.

Supplementary material
Supplementary material is available at Cardiovascular Research online.
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