1,194 research outputs found

    Kondo resonance in a nanotube quantum dot coupled to a normal and a superconducting lead

    Full text link
    We report on electrical transport measurements through a carbon nanotube quantum dot coupled to a normal and a superconducting lead. The ratio of Kondo temperature and superconducting gap TK/ΔT_{K}/\Delta is identified to govern the transport properties of the system. In the case of TK<ΔT_{K}<\Delta the conductance resonance splits into two resonances at ±Δ\pm \Delta. For the opposite scenario TK>ΔT_{K}>\Delta the conductance resonance persists, however the conductance is not enhanced compared to the normal state due to a relative asymmetry of the lead-dot couplings. Within this limit the data is in agreement with a simple model of a resonant SN-interface.Comment: 4 pages, 2 figures. submitted to the Proc. Rencontres de Moriond on Quantum Information and Decoherence in Nanosystems 200

    Spongiibacter marinus gen. nov., sp. nov., a halophilic marine bacterium isolated from the boreal sponge Haliclona sp. 1

    Get PDF
    Strain HAL40bT was isolated from the marine sponge Haliclona sp. 1 collected at the Sula Ridge off the Norwegian coast and characterized by physiological, biochemical and phylogenetic analyses. The isolate was a small rod with a polar flagellum. It was aerobic, Gram-negative and oxidase- and catalase-positive. Optimal growth was observed at 20–30 °C, pH 7–9 and in 3 % NaCl. Substrate utilization tests were positive for arabinose, Tween 40 and Tween 80. Enzyme tests were positive for alkaline phosphatase, esterase lipase (C8), leucine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase and N-acetyl-β-glucosaminidase. The predominant cellular fatty acid was C17 : 1 ω8, followed by C17 : 0 and C18 : 1 ω7. Analysis by matrix-assisted laser desorption/ionization time-of-flight MS was used to characterize the strain, producing a characteristic low-molecular-mass protein pattern that could be used as a fingerprint for identification of members of this species. The DNA G+C content was 69.1 mol%. Phylogenetic analysis supported by 16S rRNA gene sequence comparison classified the strain as a member of the class Gammaproteobacteria. Strain HAL40bT was only distantly related to other marine bacteria including Neptunomonas naphthovorans and Marinobacter daepoensis (type strain sequence similarity >90 %). Based on its phenotypic, physiological and phylogenetic characteristics, it is proposed that the strain should be placed into a new genus as a representative of a novel species, Spongiibacter marinus gen. nov., sp. nov.; the type strain of Spongiibacter marinus is HAL40bT (=DSM 17750T =CCUG 54896T)

    Crew factors in flight operations 6: Psychophysiological responses to helicopter operations

    Get PDF
    Thirty-two helicopter pilots were studied before, during, and after 4-5 day trips providing support services from Aberdeen, Scotland, to rigs in the North Sea oil fields. Early on-duty times obliged subjects to wake up 1.5 hours earlier on trip days than on pretrip days. Consequently, they slept nearly an hour less per night on trips. They reported more fatigue on post-trip days than on pretrip days, suggesting a cumulative effect of duty-related activities and sleep loss. Fatigue and negative affect were higher, and activation lower, by the end of trip days than by the end of pretrip days. The earlier a subject went on duty, the lower his activation by the end of the day. Caffeine consumption increased 42 percent on trip days. The incidence of headache doubled, of back pain increased twelve fold, and of burning eyes quadrupled. In the aircraft studied, thermal discomfort and high vibration levels were common. The longer pilots remained on duty, the more negative their mood became

    Cancer of the Esophagus

    Get PDF
    This chapter in Cancer Concepts: A Guidebook for the Non-Oncologist presents an overview of esophageal cancer, including etiology, epidemiology, screening, pathology, staging, and treatment.https://escholarship.umassmed.edu/cancer_concepts/1027/thumbnail.jp

    Ion mobility-tandem mass spectrometry of mucin-type O-glycans

    Get PDF
    The dense O-glycosylation of mucins plays an important role in the defensive properties of the mucus hydrogel. Aberrant glycosylation is often correlated with inflammation and pathology such as COPD, cancer, and Crohn’s disease. The inherent complexity of glycans and the diversity in the O-core structure constitute fundamental challenges for the analysis of mucin-type O-glycans. Due to coexistence of multiple isomers, multidimensional workflows such as LC-MS are required. To separate the highly polar carbohydrates, porous graphitized carbon is often used as a stationary phase. However, LC-MS workflows are time-consuming and lack reproducibility. Here we present a rapid alternative for separating and identifying O-glycans released from mucins based on trapped ion mobility mass spectrometry. Compared to established LC-MS, the acquisition time is reduced from an hour to two minutes. To test the validity, the developed workflow was applied to sputum samples from cystic fibrosis patients to map O-glycosylation features associated with disease

    Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures.

    Get PDF
    Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan-cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis-defined CNA signatures are predictive of glycolytic phenotypes, including 18F-fluorodeoxy-glucose (FDG) avidity of patient tumors, and increased proliferation. The primary CNA signature is enriched for p53 mutations and is associated with glycolysis through coordinate amplification of glycolytic genes and other cancer-linked metabolic enzymes. A pan-cancer and cross-species comparison of CNAs highlighted 26 consistently altered DNA regions, containing 11 enzymes in the glycolysis pathway in addition to known cancer-driving genes. Furthermore, exogenous expression of hexokinase and enolase enzymes in an experimental immortalization system altered the subsequent copy number status of the corresponding endogenous loci, supporting the hypothesis that these metabolic genes act as drivers within the conserved CNA amplification regions. Taken together, these results demonstrate that metabolic stress acts as a selective pressure underlying the recurrent CNAs observed in human tumors, and further cast genomic instability as an enabling event in tumorigenesis and metabolic evolution

    Maximal entropy inference of oncogenicity from phosphorylation signaling

    Get PDF
    Point mutations in the phosphorylation domain of the Bcr-Abl fusion oncogene give rise to drug resistance in chronic myelogenous leukemia patients. These mutations alter kinase-mediated signaling function and phenotypic outcome. An information theoretic analysis of the correlation of phosphoproteomic profiling and transformation potency of the oncogene in different mutants is presented. The theory seeks to predict the leukemic transformation potency from the observed signaling by constructing a distribution of maximal entropy of site-specific phosphorylation events. The theory is developed with special reference to systems biology where high throughput measurements are typical. We seek sets of phosphorylation events most contributory to predicting the phenotype by determining the constraints on the signaling system. The relevance of a constraint is measured by how much it reduces the value of the entropy from its global maximum, where all events are equally likely. Application to experimental phospho-proteomics data for kinase inhibitor-resistant mutants shows that there is one dominant constraint and that other constraints are not relevant to a similar extent. This single constraint accounts for much of the correlation of phosphorylation events with the oncogenic potency and thereby usefully predicts the trends in the phenotypic output. An additional constraint possibly accounts for biological fine structure
    corecore