298 research outputs found
Rheology of Lamellar Liquid Crystals in Two and Three Dimensions: A Simulation Study
We present large scale computer simulations of the nonlinear bulk rheology of
lamellar phases (smectic liquid crystals) at moderate to large values of the
shear rate (Peclet numbers 10-100), in both two and three dimensions. In two
dimensions we find that modest shear rates align the system and stabilise an
almost regular lamellar phase, but high shear rates induce the nucleation and
proliferation of defects, which in steady state is balanced by the annihilation
of defects of opposite sign. The critical shear rate at onset of this second
regime is controlled by thermodynamic and kinetic parameters; we offer a
scaling analysis that relates the critical shear rate to a critical "capillary
number" involving those variables. Within the defect proliferation regime, the
defects may be partially annealed by slowly decreasing the applied shear rate;
this causes marked memory effects, and history-dependent rheology. Simulations
in three dimensions show instead shear-induced ordering even at the highest
shear rates studied here. This suggests that the critical shear rate shifts
markedly upward on increasing dimensionality. This may in part reflect the
reduced constraints on defect motion, allowing them to find and annihilate each
other more easily. Residual edge defects in the 3D aligned state mostly point
along the flow velocity, an orientation impossible in two dimensions.Comment: 18 pages, 12 figure
Droplet microemulsions at the emulsification boundary: The influence of the surfactant structure on the elastic constants of the amphiphillic film
Size and cell type dependent uptake of silica nanoparticles
As silica nanoparticles (SiO2 NP) gain increasing interest for medical applications it is important to understand their potential adverse effects for humans. Here we prepared well-defined core-shell fluorescently labelled SiO2 NP of 15, 60 and 200 nm diameter and analyzed their cytotoxicity in THP-1 derived macrophages, A549 epithelial cells, HaCaT keratinocytes and NRK-52E kidney cells. We observed a size-dependent cytotoxicity in all cell types in serumfree conditions. HaCaT cells were least and macrophages or lung derived A549 cells were highly sensitive towards SiO2 NP treatment. Differences in cytotoxicity could be correlated with different uptake rates. By using flow cytometry and confocal microscopy we quantified the uptake. Furthermore we used specific inhibitors for clathrin- and caveolinmediated endocytosis to elucidate the uptake mechanisms, which were found to be dependent on the NP size and the cell type. Clathrin-mediated endocytosis was involved in the uptake of SiO2 NP of all sizes and was the major pathway for 60 nm or 200 nm SiO2 NP. Caveolin-mediated endocytosis contributed to the uptake of 60 and 200 nm SiO2 NP in THP-1 macrophages but only to uptake of 200 nm SiO2 NP in A549. However, in the presence of serum all SiO2 NP were non-toxic. The presence of serum furthermore could alter the uptake mechanism. In summary, this study demonstrates size- and cell type dependent differences in SiO2 NP uptake and toxicity
Quantitative description of temperature induced self-aggregation thermograms determined by differential scanning calorimetry
A novel thermodynamic approach for the description of differential scanning calorimetry (DSC) experiments on self-aggregating systems is derived and presented. The method is based on a mass action model where temperature dependence of aggregation numbers is considered. The validity of the model was confirmed by describing the aggregation behavior of poly(ethylene oxide)-poly(propylene oxide) block copolymers, which are well-known to exhibit a strong temperature dependence. The quantitative description of the thermograms could be performed without any discrepancy between calorimetric and van 't Hoff enthalpies, and moreover, the aggregation numbers obtained from the best fit of the DSC experiments are in good agreement with those obtained by light scattering experiments corroborating the assumptions done in the derivation of the new model
Impact of glycan nature on structure and viscoelastic properties of glycopeptide hydrogels
Mucus is a complex biological hydrogel that acts as a barrier for almost everything entering or exiting the body. It is therefore of emerging interest for biomedical and pharmaceutical applications. Besides water, the most abundant components are the large and densely glycosylated mucins, a family of glycoproteins with sizes of up to 20 MDa and a carbohydrate content of up to 80 wt%. Here, we designed and explored a library of glycosylated peptides to deconstruct the complexity of mucus. By using the well characterised hFF03 coiled-coil system as a hydrogel-forming peptide scaffold, we systematically probed the contribution of single glycans to the secondary structure as well as the formation and the viscoelastic properties of the resulting hydrogels. We show that glycan-decoration does not affect α helix and coiled-coil formation while it alters gel stiffness. By using oscillatory macrorheology, dynamic light scattering microrheology and fluorescence lifetime-based nanorheology, we characterised the glycopeptide materials over several length scales. Molecular simulations revealed that the glycosylated linker may extend into the solvent, but more frequently interacts with the peptide, thereby likely modifying the stability of the self-assembled peptide fibres. The results of this systematic study highlight the interplay between glycan structure and hydrogel properties and may guide the development of synthetic mucus mimetics
Bending elasticity of a curved amphiphilic film decorated anchored copolymers: a small angle neutron scattering study
Microemulsion droplets (oil in water stabilized by a surfactant film) are
progressively decorated with increasing amounts of poly ethylene- oxide (PEO)
chains anchored in the film by the short aliphatic chain grafted at one end of
the PEO chain . The evolution of the bending elasticity of the surfactant film
with increasing decoration is deduced from the evolution in size and
polydispersity of the droplets as reflected by small angle neutron scattering.
The optimum curvature radius decreases while the bending rigidity modulus
remains practically constant. The experimental results compare well with the
predictions of a model developed for the bending properties of a curved film
decorated by non-adsorbing polymer chains, which takes into account, the finite
curvature of the film and the free diffusion of the chains on the film.Comment: 30 June 200
Rational design of amphiphilic fluorinated peptides : evaluation of self-assembly properties and hydrogel formation
Glycan-induced fluorescence enhancement using a molecular rotor–boronic acid conjugate
Fluorescent molecular rotors (FMRs) are known for their sensitivity to changes in viscosity and confinement. Here, we show that a boronic acid conjugate of the rotor dye CCVJ exhibits strong enhancements in fluorescence upon binding to complex glycans. Glycan-induced fluorescence enhancement (GIFE) operates at low and high viscosity
Robust Phase Behavior of Model Transient networks
In order to study the viscoelastic properties of certain complex fluids which
are described in terms of a multiconnected transient network we have developed
a convenient model system composed of microemulsion droplets linked by
telechelic polymers. The phase behavior of such systems has two characteristic
features: a large monophasic region which consists of two sub-regions (a fluid
sol phase and a viscoelastic gel phase) separated by a percolation line and a
two phase region at low volume fraction with separation into a dilute sol phase
and a concentrated gel phase. From the plausible origin of these features we
expect them to be very similar in different systems. We describe here the phase
behavior of four different systems we prepared in order to vary the time scale
of the dynamical response of the transient network; they consist of the
combination of two oil(decane) in water microemulsions differing by the
stabilizing surfactant monolayer (Cetyl pyridinium chloride/octanol or
TX100/TX35) and of two telechelic polymers which are end-grafted poly (ethylene
oxide) chains, differing by the end-grafted hydrophobic aliphatic chains
(C12H25 or C18H37).Comment: April 9 200
Calcium Triggered Lα-H2 Phase Transition Monitored by Combined Rapid Mixing and Time-Resolved Synchrotron SAXS
BACKGROUND: Awad et al. reported on the Ca(2+)-induced transitions of dioleoyl-phosphatidylglycerol (DOPG)/monoolein (MO) vesicles to bicontinuous cubic phases at equilibrium conditions. In the present study, the combination of rapid mixing and time-resolved synchrotron small-angle X-ray scattering (SAXS) was applied for the in-situ investigations of fast structural transitions of diluted DOPG/MO vesicles into well-ordered nanostructures by the addition of low concentrated Ca(2+) solutions. METHODOLOGY/PRINCIPAL FINDINGS: Under static conditions and the in absence of the divalent cations, the DOPG/MO system forms large vesicles composed of weakly correlated bilayers with a d-spacing of approximately 140 A (L(alpha)-phase). The utilization of a stopped-flow apparatus allowed mixing these DOPG/MO vesicles with a solution of Ca(2+) ions within 10 milliseconds (ms). In such a way the dynamics of negatively charged PG to divalent cation interactions, and the kinetics of the induced structural transitions were studied. Ca(2+) ions have a very strong impact on the lipidic nanostructures. Intriguingly, already at low salt concentrations (DOPG/Ca(2+)>2), Ca(2+) ions trigger the transformation from bilayers to monolayer nanotubes (inverted hexagonal phase, H(2)). Our results reveal that a binding ratio of 1 Ca(2+) per 8 DOPG is sufficient for the formation of the H(2) phase. At 50 degrees C a direct transition from the vesicles to the H(2) phase was observed, whereas at ambient temperature (20 degrees C) a short lived intermediate phase (possibly the cubic Pn3m phase) coexisting with the H(2) phase was detected. CONCLUSIONS/SIGNIFICANCE: The strong binding of the divalent cations to the negatively charged DOPG molecules enhances the negative spontaneous curvature of the monolayers and causes a rapid collapsing of the vesicles. The rapid loss of the bilayer stability and the reorganization of the lipid molecules within ms support the argument that the transition mechanism is based on a leaky fusion of the vesicles
- …
