54 research outputs found

    Worldwide diversity of endophytic fungi and insects associated with dormant tree twigs

    Get PDF
    International trade in plants and climate change are two of the main factors causing damaging tree pests (i.e. fungi and insects) to spread into new areas. To mitigate these risks, a large-scale assessment of tree-associated fungi and insects is needed. We present records of endophytic fungi and insects in twigs of 17 angiosperm and gymnosperm genera, from 51 locations in 32 countries worldwide. Endophytic fungi were characterized by high-throughput sequencing of 352 samples from 145 tree species in 28 countries. Insects were reared from 227 samples of 109 tree species in 18 countries and sorted into taxonomic orders and feeding guilds. Herbivorous insects were grouped into morphospecies and were identified using molecular and morphological approaches. This dataset reveals the diversity of tree-associated taxa, as it contains 12,721 fungal Amplicon Sequence Variants and 208 herbivorous insect morphospecies, sampled across broad geographic and climatic gradients and for many tree species. This dataset will facilitate applied and fundamental studies on the distribution of fungal endophytes and insects in trees

    Climate, host and geography shape insect and fungal communities of trees.

    Get PDF
    Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate

    Climate, host and geography shape insect and fungal communities of trees

    Get PDF
    13 Pág.Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate.We gratefully acknowledge the financial support of the Swiss National Science Foundation (Project C15.0081) Grant 174644 and the Swiss Federal Office for the Environment Grant 00.0418.PZ/P193-1077. This work was supported by COST Action “Global Warning” (FP1401). CABI is an international intergovernmental organisation, and R.E., M.K., H.L. and I.F. gratefully acknowledge the core financial support from our member countries (and lead agencies) including the United Kingdom (Foreign, Commonwealth and Development Office), China (Chinese Ministry of Agriculture and Rural Affairs), Australia (Australian Centre for International Agricultural Research), Canada (Agriculture and Agri-Food Canada), Netherlands (Directorate General for International Cooperation), and Switzerland (Swiss Agency for Development and Cooperation). See https://www.cabi.org/aboutcabi/who-we-work-with/key-donors/ for full details. M.B. and M.K.H. were financially supported by the Slovak Research and Development Agency (Project APVV-19-0116). H.B. would like to thank the botanist Jorge Capelo who helped with Myrtaceae identification and INIAV IP for supporting her contribution to this study. Contributions of M. de G. and B.P. were financed through Slovenian Research Agency (P4-0107) and by the Slovenian Ministry of Agriculture, Forestry and Food (Public Forestry Service). G.C, C.B.E. and A.F.M. were supported by OTKA 128008 research grant provided by the National Research, Development and Innovation Office. Contributions of K.A. and R.D. were supported by the Estonian Research Council grants PSG136 and PRG1615. M.J.J., C.L.M. and H.P.R. were financially supported by the 15. Juni Fonden (Grant 2017-N-123). P.B., B.G. and M.Ka. were financially supported by the Ministry of Science and Higher Education of the Republic of Poland for the University of Agriculture in Krakow (SUB/040013-D019). C.N. was financially supported by the Slovak Research and Development Agency (Grant APVV-15-0531). N.K. was partially supported by the Russian Science Foundation (grant № 22-16-00075) [species identification] and the basic project of Sukachev Institute of Forest SB RAS (№ FWES-2021-0011) [data analysis]. R.OH. was supported by funding from DAERA, and assistance from David Craig, AFBI. T.P. thanks the South African Department of Forestry, Fisheries and the Environment (DFFE) for funding noting that this publication does not necessarily represent the views or opinions of DFFE or its employees. In preparing the publication, materials of the bioresource scientific collection of the CSBG SB RAS “Collections of living plants indoors and outdoors” USU_440534 (Novosibirsk, Russia) were used. M.Z. was financially supported by Ministry of Science, Technological Development and Innovation of the Republic of Serbia (contract no. 451-03-47/2023-01/200197). We acknowledge the Genetic Diversity Centre (GDC) at ETH Zurich for providing computational infrastructure and acknowledge the contribution of McGill University and Génome Québec Innovation Center (Montréal, Quebec, Canada) for pair-end sequencing on Illumina MiSeq. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Teisseyre-Tornquist Line : Evolution of the View on the Edge of the East European Craton

    No full text
    Nie ma wątpliwości co do znaczącego wkładu Wawrzyńca Teisseyre’a i Alexandra Tornquista w wyznaczenie przebiegu SW krawędzi kratonu wschodnioeuropejskiego w Europie Centralnej (Teisseyre 1893, 1903; Tornquist 1908, 1910; rys. 1). Teisseyre jako pierwszy udokumentował SW krawędź horstu podolskiego (linia Berdo-Narol), jednak w swoich pracach powoływał się na wcześniejsze prace innych geologów: Wilhelma Blöde (1830, 1845), Aloisego Altha (1874, 1881), Józefa Siemiradzkiego i Emila Dunikowskiego (1891), oraz Eduarda Suessa (1883-1888). Również Tornquist wykorzystywał wyniki swoich poprzedników: Alberta Schücka (1899, 1902), Wilhelma Deecke (1906) i Hansa Preußa (1910). Linia Teisseyre’a-Tornquista (TTL) w jej południowej części biegnie SW skrajem horstu podolskiego wzdłuż linii Berdo-Narol (Teisseyre 1893, 1903), a w części północnej wzdłuż SW krawędzi płyty bałtyckiej, linii Skania-Łysogóry (Tornquist 1908, 1910). Obie linie spotykają się w pobliżu Sandomierza (rys. 3). Nowoczesne badania geofizyczne pokazują, że krawędź kratonu jest ważną strukturą litosfery, dobrze widoczną w tomografii sejsmicznej, na mapie głębokości granicy Moho (rys. 6), w ano¬maliach grawitacyjnych i magnetycznych (rys. 7), jak również w badaniach strumienia ciepła i elektromagnetycznych. Położenie SW krawędzi kratonu określone przez różnych autorów może się różnić nawet o 50 km. Z tego powodu częściej używany jest termin „strefa” niż „linia”. Terminy opisujące SW krawędź kratonu powinny być rozumiane tak jak poniżej. Linia Teisseyre'a-Tornquista (TTL) jest elementem liniowym, ostrą krawędzią cokołu krystalicznego górnej ("granitowej") skorupy ziemskiej kratonu. Strefa Teisseyre'a-Tornquista (TTZ) jest strefą o szerokości do kilkudziesięciu kilo¬metrów związaną z krawędzią kratonu. W pokrywie osadowej może przejawiać się systemem uskoków. Kontynuacją TTZ na północy jest strefa Sorgenfrei-Tornquista (STZ). Strefa szwu transeuropejskiego (TESZ) jest terminem określającym zespół terranów pomiędzy kratonem wschodnioeuropejskim i platformą paleozoiczną; TESZ nie należy mylić z TTL, TTZ i STZ.There is no doubt in a significant contribution of Wawrzyniec Teisseyre and Alexander Tornquist in the determination of the SW edge of the East European Craton (Teisseyre 1893, 1903; Tornquist 1908, 1910; fig. 1). Wawrzyniec Teisseyre first documented SW edge of the Podolian horst (Berdo-Narol line), however in his papers he mentioned earlier contributions of other geologists: Wilhelm Blöde (1830, 1845), Alois Alth (1874, 1881), Józef Siemiradzki and Emil Dunikowski (1891), and Eduard Suess (1883-1888). Similar in the case of Alexander Tornquist – earlier contributions of Schück (1899, 1902), Deecke (1906) and Preuß (1910), has benefited him by designating the southwest edge of the crystalline East European Craton (EEC). The Teisseyre-Tornquist Line (TTL) follows in its southern part the SW edge of the Podolian horst, along Berdo-Narol line (Teisseyre, 1893, 1903) and in its northern part along the SW edge of the Baltic plate, Scania-Łysogóry line (Tornquist, 1908, 1910). Both lines meet together closely to Sandomierz (fig. 3). Modern geophysical investigations show that the edge of the craton is a major lithospheric structure, well seen in seismic tomography, Moho depth map (fig. 6), gravity and magnetic (fig. 7) data, as well as in terrestrial heat flow and electromagnetic investigations. The location of SW edge of the EEC determined by different authors is different and the variation in location may reach up to 50 km. It could be reason, that instead of “line” a term “zone” is mostly used. However, the understanding of terms describing SW edge of the EEC should be as bellow. Teisseyre-Tornquist Line (TTL) conceived as a linear feature is border of crystalline, “granitic” upper crust of the EEC. Teisseyre-Tornquist Zone (TTZ) is a few tens of kilometers wide zone related to craton edge. In the sedimentary cover it could manifests itself as a system of faults. To the north it continues as Sorgenfrei-Tornquist Zone (STZ). Trans-European Suture Zone (TESZ) is a term for an assemblage of suspect terranes boarded by the EEC and Paleozoic Platform; TESZ should not be mistaken with TTL, TTZ and STZ

    Peculiar Natural Phenomena in Annales Seu Cronicae Incliti Regni Poloniae Described by Jan Długosz

    No full text
    W dwunastu księgach Roczników, czyli kronik sławnego Królestwa Polskiego Jan Długosz opisał dzieje Polski od jej legendarnych początków do roku 1480. W Rocznikach znajdujemy opisy niezwykłych zjawisk przyrodniczych. Do zjawisk astronomicznych zaliczymy opisy kilkunastu komet i zaćmienia Słońca. Z ekstremalnymi zjawiskami w atmosferze wiążą się uciążliwe i niebezpieczne dla ludzi ulewy, powodzie, susze, wichry, śniegi, mrozy, pioruny. Ze stanem atmosfery wiążą się także spektakularne zjawiska optyczne, jak potrójne Słońce (poboczne Słońce), czy potrójny Księżyc. Rzadkie i niebezpieczne są lokalne trzęsienia ziemi, ale w Rocznikach odnotowane zostały również liczne odczucia dalszych trzęsień ziemi. Fragmenty kilkudziesięciu opisów i krótkich wzmianek zostały zestawione chronologicznie na końcu tego opracowania.In twelve books of Annales seu cronicae incliti Regni Poloniae, Jan Długosz described the history of Poland from its legendary beginnings, until 1480. In the Annales we find descriptions of unusual natural phenomena. Astronomical phenomena include descriptions of a dozen comets and solar eclipses. Extreme phenomena in the atmosphere involve nuisance and dangerous for humans downpours, floods, droughts, strong winds, snows, frosts, lightning. The state of the atmosphere is also associated with spectacular optical phenomena, such as the triple Sun (Sun dog), or the triple Moon (Moon dog). Local earthquakes are rare and dangerous, but there are also numerous of further earthquakes described in the Annales. Text fragments from dozens of natural phenomena descriptions were compiled chronologically at the end of this study
    corecore