276 research outputs found

    Ferromagnetism in semiconductors and oxides: prospects from a ten years' perspective

    Full text link
    Over the last decade the search for compounds combining the resources of semiconductors and ferromagnets has evolved into an important field of materials science. This endeavour has been fuelled by continual demonstrations of remarkable low-temperature functionalities found for ferromagnetic structures of (Ga,Mn)As, p-(Cd,Mn)Te, and related compounds as well as by ample observations of ferromagnetic signatures at high temperatures in a number of non-metallic systems. In this paper, recent experimental and theoretical developments are reviewed emphasising that, from the one hand, they disentangle many controversies and puzzles accumulated over the last decade and, on the other, offer new research prospects.Comment: review, 13 pages, 8 figures, 109 reference

    Movements of Wolves at the Northern Extreme of the Species' Range, Including during Four Months of Darkness

    Get PDF
    Information about wolf (Canis lupus) movements anywhere near the northern extreme of the species' range in the High Arctic (>75°N latitude) are lacking. There, wolves prey primarily on muskoxen (Ovibos moschatus) and must survive 4 months of 24 hr/day winter darkness and temperatures reaching −53 C. The extent to which wolves remain active and prey on muskoxen during the dark period are unknown, for the closest area where information is available about winter wolf movements is >2,250 km south. We studied a pack of ≥20 wolves on Ellesmere Island, Nunavut, Canada (80°N latitude) from July 2009 through mid-April 2010 by collaring a lead wolf with a Global Positioning System (GPS)/Argos radio collar. The collar recorded the wolf's precise locations at 6:00 a.m. and 6:00 p.m. daily and transmitted the locations by satellite to our email. Straight-line distances between consecutive 12-hr locations varied between 0 and 76 km. Mean (SE) linear distance between consecutive locations (n = 554) was 11 (0.5) km. Total minimum distance traveled was 5,979 km, and total area covered was 6,640 km2, the largest wolf range reported. The wolf and presumably his pack once made a 263-km (straight-line distance) foray to the southeast during 19–28 January 2010, returning 29 January to 1 February at an average of 41 km/day straight-line distances between 12-hr locations. This study produced the first detailed movement information about any large mammal in the High Arctic, and the average movements during the dark period did not differ from those afterwards. Wolf movements during the dark period in the highest latitudes match those of the other seasons and generally those of wolves in lower latitudes, and, at least with the gross movements measurable by our methods, the 4-month period without direct sunlight produced little change in movements

    Hydrogen peroxide bleaching of cellulose pulps obtained from brewer’s spent grain

    Get PDF
    Brewer’s spent grain (BSG) was evaluated for bleached pulp production. Two cellulose pulps with different chemical compositionswere produced by soda pulping: one from the original raw material and the other from material pretreated by dilute acid. Both of them were bleached by a totally chlorine-free sequence performed in three stages, using 5% hydrogen peroxide in the two initial, and a 0.25 NNaOHsolution in the last one. Chemical composition, kappa number, viscosity, brightness and yield of bleached and unbleached pulps were evaluated. The high hemicellulose (28.4% w/w) and extractives (5.8% w/w) contents in original BSG affected the pulping and bleaching processes.However, soda pulping of acid pretreated BSG gave a celluloserich pulp (90.4% w/w) with low hemicellulose and extractives contents (7.9% w/w and <3.4% w/w, respectively), which was easily bleached achieving a kappa number of 11.21, viscosity of 3.12 cp, brightness of 71.3%, cellulose content of 95.7% w/w, and residual lignin of 3.4% w/w. Alkaline and oxidative delignification of acid pretreated BSG was found as an attractive approach for producing high-purity, chlorine-free cellulose pulp.FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), Brazil.CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior)

    A theoretical foundation for multi-scale regular vegetation patterns

    Get PDF
    Self-organized regular vegetation patterns are widespread and thought to mediate ecosystem functions such as productivity and robustness, but the mechanisms underlying their origin and maintenance remain disputed. Particularly controversial are landscapes of overdispersed (evenly spaced) elements, such as North American Mima mounds, Brazilian murundus, South African heuweltjies, and, famously, Namibian fairy circles. Two competing hypotheses are currently debated. On the one hand, models of scale-dependent feedbacks, whereby plants facilitate neighbours while competing with distant individuals, can reproduce various regular patterns identified in satellite imagery. Owing to deep theoretical roots and apparent generality, scale-dependent feedbacks are widely viewed as a unifying and near-universal principle of regular-pattern formation despite scant empirical evidence. On the other hand, many overdispersed vegetation patterns worldwide have been attributed to subterranean ecosystem engineers such as termites, ants, and rodents. Although potentially consistent with territorial competition, this interpretation has been challenged theoretically and empirically and (unlike scale-dependent feedbacks) lacks a unifying dynamical theory, fuelling scepticism about its plausibility and generality. Here we provide a general theoretical foundation for self-organization of social-insect colonies, validated using data from four continents, which demonstrates that intraspecific competition between territorial animals can generate the large-scale hexagonal regularity of these patterns. However, this mechanism is not mutually exclusive with scale-dependent feedbacks. Using Namib Desert fairy circles as a case study, we present field data showing that these landscapes exhibit multi-scale patterning-previously undocumented in this system-that cannot be explained by either mechanism in isolation. These multi-scale patterns and other emergent properties, such as enhanced resistance to and recovery from drought, instead arise from dynamic interactions in our theoretical framework, which couples both mechanisms. The potentially global extent of animal-induced regularity in vegetation-which can modulate other patterning processes in functionally important ways-emphasizes the need to integrate multiple mechanisms of ecological self-organization

    Kihi-to, a herbal traditional medicine, improves Abeta(25–35)-induced memory impairment and losses of neurites and synapses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously hypothesized that achievement of recovery of brain function after the injury requires the reconstruction of neuronal networks, including neurite regeneration and synapse reformation. Kihi-to is composed of twelve crude drugs, some of which have already been shown to possess neurite extension properties in our previous studies. The effect of Kihi-to on memory deficit has not been examined. Thus, the goal of the present study is to determine the <it>in vivo </it>and <it>in vitro </it>effects of Kihi-to on memory, neurite growth and synapse reconstruction.</p> <p>Methods</p> <p>Effects of Kihi-to, a traditional Japanese-Chinese traditional medicine, on memory deficits and losses of neurites and synapses were examined using Alzheimer's disease model mice. Improvements of Aβ(25–35)-induced neuritic atrophy by Kihi-to and the mechanism were investigated in cultured cortical neurons.</p> <p>Results</p> <p>Administration of Kihi-to for consecutive 3 days resulted in marked improvements of Aβ(25–35)-induced impairments in memory acquisition, memory retention, and object recognition memory in mice. Immunohistochemical comparisons suggested that Kihi-to attenuated neuritic, synaptic and myelin losses in the cerebral cortex, hippocampus and striatum. Kihi-to also attenuated the calpain increase in the cerebral cortex and hippocampus. When Kihi-to was added to cells 4 days after Aβ(25–35) treatment, axonal and dendritic outgrowths in cultured cortical neurons were restored as demonstrated by extended lengths of phosphorylated neurofilament-H (P-NF-H) and microtubule-associated protein (MAP)2-positive neurites. Aβ(25–35)-induced cell death in cortical culture was also markedly inhibited by Kihi-to. Since NF-H, MAP2 and myelin basic protein (MBP) are substrates of calpain, and calpain is known to be involved in Aβ-induced axonal atrophy, expression levels of calpain and calpastatin were measured. Treatment with Kihi-to inhibited the Aβ(25–35)-evoked increase in the calpain level and decrease in the calpastatin level. In addition, Kihi-to inhibited Aβ(25–35)-induced calcium entry.</p> <p>Conclusion</p> <p>In conclusion Kihi-to clearly improved the memory impairment and losses of neurites and synapses.</p

    Expression and Membrane Topology of Anopheles gambiae Odorant Receptors in Lepidopteran Insect Cells

    Get PDF
    A lepidopteran insect cell-based expression system has been employed to express three Anopheles gambiae odorant receptors (ORs), OR1 and OR2, which respond to components of human sweat, and OR7, the ortholog of Drosophila's OR83b, the heteromerization partner of all functional ORs in that system. With the aid of epitope tagging and specific antibodies, efficient expression of all ORs was demonstrated and intrinsic properties of the proteins were revealed. Moreover, analysis of the orientation of OR1 and OR2 on the cellular plasma membrane through the use of a novel ‘topology screen’ assay and FACS analysis demonstrates that, as was recently reported for the ORs in Drosophila melanogaster, mosquito ORs also have a topology different than their mammalian counterparts with their N-terminal ends located in the cytoplasm and their C-terminal ends facing outside the cell. These results set the stage for the production of mosquito ORs in quantities that should permit their detailed biochemical and structural characterization and the exploration of their functional properties

    Utility of Cardiac Magnetic Resonance to assess association between admission hyperglycemia and myocardial damage in patients with reperfused ST-Segment Elevation Myocardial Infarction

    Get PDF
    International audienceAbstract: Aims: to investigate the association between admission hyperglycemia and myocardial damage in patients with ST-segment elevation myocardial infarction (STEMI) using Cardiac Magnetic Resonance (CMR). Methods: We analyzed 113 patients with STEMI treated with successful primary percutaneous coronary intervention. Admission hyperglycemia was defined as a glucose level >= 7.8 mmol/l. Contrast-enhanced CMR was performed between 3 and 7 days after reperfusion to evaluate left ventricular function and perfusion data after injection of gadolinium-DTPA. First-pass images (FP), providing assessment of microvascular obstruction and Late Gadolinium Enhanced images (DE), reflecting the extent of infarction, were investigated and the extent of transmural tissue damage was determined by visual scores. Results: Patients with a supramedian FP and DE scores more frequently had left anterior descending culprit artery (p = 0.02 and < 0.001), multivessel disease (p = 0.02 for both) and hyperglycemia (p < 0.001). Moreover, they were characterized by higher levels of HbA(1c) (p = 0.01 and 0.04), peak plasma Creatine Kinase (p < 0.001), left ventricular end-systolic volume (p = 0.005 and < 0.001), and lower left ventricular ejection fraction (p = 0.001 and < 0.001). In a multivariate model, admission hyperglycemia remains independently associated with increased FP and DE scores. Conclusion: Our results show the existence of a strong relationship between glucose metabolism impairment and myocardial damage in patients with STEMI. Further studies are needed to show if aggressive glucose control improves myocardial perfusion, which could be assessed using CMR

    Dopamine Modulates Persistent Synaptic Activity and Enhances the Signal-to-Noise Ratio in the Prefrontal Cortex

    Get PDF
    The importance of dopamine (DA) for prefrontal cortical (PFC) cognitive functions is widely recognized, but its mechanisms of action remain controversial. DA is thought to increase signal gain in active networks according to an inverted U dose-response curve, and these effects may depend on both tonic and phasic release of DA from midbrain ventral tegmental area (VTA) neurons.We used patch-clamp recordings in organotypic co-cultures of the PFC, hippocampus and VTA to study DA modulation of spontaneous network activity in the form of Up-states and signals in the form of synchronous EPSP trains. These cultures possessed a tonic DA level and stimulation of the VTA evoked DA transients within the PFC. The addition of high (≥1 µM) concentrations of exogenous DA to the cultures reduced Up-states and diminished excitatory synaptic inputs (EPSPs) evoked during the Down-state. Increasing endogenous DA via bath application of cocaine also reduced Up-states. Lower concentrations of exogenous DA (0.1 µM) had no effect on the up-state itself, but they selectively increased the efficiency of a train of EPSPs to evoke spikes during the Up-state. When the background DA was eliminated by depleting DA with reserpine and alpha-methyl-p-tyrosine, or by preparing corticolimbic co-cultures without the VTA slice, Up-states could be enhanced by low concentrations (0.1–1 µM) of DA that had no effect in the VTA containing cultures. Finally, in spite of the concentration-dependent effects on Up-states, exogenous DA at all but the lowest concentrations increased intracellular current-pulse evoked firing in all cultures underlining the complexity of DA's effects in an active network.Taken together, these data show concentration-dependent effects of DA on global PFC network activity and they demonstrate a mechanism through which optimal levels of DA can modulate signal gain to support cognitive functioning

    Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma

    Get PDF
    Poor prognosis in neuroblastoma is associated with genetic amplification of MYCN. MYCN is itself a target of let-7, a tumour suppressor family of microRNAs implicated in numerous cancers. LIN28B, an inhibitor of let-7 biogenesis, is overexpressed in neuroblastoma and has been reported to regulate MYCN. Here we show, however, that LIN28B is dispensable in MYCN-amplified neuroblastoma cell lines, despite de-repression of let-7. We further demonstrate that MYCN messenger RNA levels in amplified disease are exceptionally high and sufficient to sponge let-7, which reconciles the dispensability of LIN28B. We found that genetic loss of let-7 is common in neuroblastoma, inversely associated with MYCN amplification, and independently associated with poor outcomes, providing a rationale for chromosomal loss patterns in neuroblastoma. We propose that let-7 disruption by LIN28B, MYCN sponging, or genetic loss is a unifying mechanism of neuroblastoma development with broad implications for cancer pathogenesis.United States. National Institutes of Health (R01GM107536)Alex's Lemonade Stand FoundationHoward Hughes Medical InstituteBoston Children's Hospital. Manton Center for Orphan Disease ResearchNational Institute of General Medical Sciences (U.S.) (T32GM007753
    • …
    corecore