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Abstract

Poor prognosis in neuroblastoma is associated with genetic amplification of MYCN. MYCN is 

itself a target of let-7, a tumor suppressor family of microRNAs implicated in numerous cancers. 

LIN28B, an inhibitor of let-7 biogenesis, is overexpressed in neuroblastoma and has been reported 

to regulate MYCN. However, here we show that LIN28B is dispensable in MYCN-amplified 

neuroblastoma cell lines, despite de-repression of let-7. We further demonstrate that MYCN 
mRNA levels in amplified disease are exceptionally high and sufficient to sponge let-7, which 

reconciles the dispensability of LIN28B. We found that genetic loss of let-7 is common in 

neuroblastoma, inversely associated with MYCN-amplification, and independently associated with 

poor outcomes, providing a rationale for chromosomal loss patterns in neuroblastoma. We propose 
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that let-7 disruption by LIN28B, MYCN sponging, or genetic loss is a unifying mechanism of 

neuroblastoma pathogenesis with broad implications for cancer pathogenesis.

Carcinogenesis involves multiple genetic and epigenetic events, yet the organizing principles 

underlying their choreography are poorly understood. MicroRNA (miRNA) deregulation is 

an important component of this landscape through both oncogenic and tumor suppressive 

functions of miRNAs1. Of these, the highly conserved let-7 family has a prominent role in 

the regulation of embryonic development and maintenance of differentiated tissues and is 

among the most abundantly expressed miRNAs. It serves as a potent tumor suppressor via 

post-transcriptional repression of multiple oncogenic mRNA targets including RAS, MYC, 

and HMGA22–4. Let-7 is downregulated in multiple tumor types and has been causally 

linked to oncogenesis1,5–8. Uncovering the mechanisms by which let-7 function is 

neutralized is therefore critical to both the fundamental understanding of cancer 

pathogenesis and novel therapies.

Several mechanisms of let-7 disruption have emerged in different contexts. First, its 

biogenesis can be suppressed by the LIN28B RNA-binding protein9; a highly conserved 

heterochronic gene implicated in cancer and reported to induce tumors in multiple mouse 

models including hepatocellular carcinoma, colon cancer, Wilms’ tumor, and 

neuroblastoma10–16. Second, competing endogenous RNAs (ceRNAs) have been proposed 

to sponge miRNAs, including let-7, diluting their activity through competition for miRNAs 

with sites common to multiple ceRNA species17–19. Third, chromosome loss is a suggested 

mechanism of let-7 disruption in cancer, as genetic deletion of let-7 is associated with 

several solid tumors1.

The neuroblastoma master oncogene, MYCN, has a 910 nucleotide long 3′UTR containing 

two let-7 binding sites which are almost perfectly conserved among land vertebrates, 

suggesting strong functional relevance20–22 (ED 1). Coding sequence mutations in 

neuroblastoma are rare23,24, whereas chromosome arm gain or loss events are common25,26. 

The most well-known chromosomal aberration is amplification of the MYCN locus, which 

occurs in ~25% of all neuroblastomas and largely defines poor prognosis27,28. Other 

common chromosomal deletions at chromosome arms 3p and 11q are inversely associated 

with MYCN-amplification. The reason for this discordance is unknown.

Here, we set out to understand the relationship between MYCN and let-7 in neuroblastoma. 

A complex relationship emerged between LIN28B activity, a novel ceRNA function of the 

MYCN 3′UTR, and let-7 genetic loss, which together present a unifying model of let-7 
suppression during neuroblastoma pathogenesis. This model provides an organizing 

principle for understanding distinct genetic patterning in neuroblastoma, with potential 

implications for cancer in general.

LIN28B and let-7 regulate the MYCN 3′UTR

LIN28B is highly expressed in human neuroblastoma and its expression correlates with 

tumor stage, rendering the LIN28B/let-7 axis an attractive target for interrogation (ED 2 a, b, 

c, d). Two recent reports concluded that this pathway plays a critical role in regulating 

Powers et al. Page 2

Nature. Author manuscript; available in PMC 2017 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MYCN and neuroblastoma cell growth12,13. To examine the relationship between the 

MYCN transcript, let-7 and LIN28B, we first transfected non-MYCN amplified 

neuroblastoma cells with the MYCN open reading frame, with or without the 3′UTR 

carrying intact or mutant let-7 sites (fig. 1a). The full-length wildtype MYCN transcript 

produced markedly lower MYCN protein levels than the ORF-only construct. Mutation of 

the let-7 sites in the 3′ UTR partially rescued MYCN expression, implicating let-7 
modulation as an important component of MYCN post-transcriptional regulation (fig. 1b). 

Expression of LIN28B suppressed the let-7 family in non-MYCN-amplified neuroblastoma 

cells and conferred a growth advantage. LIN28B rescued expression of the wildtype 3′ UTR 

construct, demonstrating that LIN28B can support MYCN expression through let-7 
repression in the absence of MYCN amplification (ED 2e, 2f, fig. 1c). However, when we 

transfected MYCN-amplified cells with a let-7a mimic, we observed decreased MYCN 

protein levels only above 15 and 80 fold increases in cellular levels of let-7a, respectively, 

suggesting that MYCN was refractory to all but exceedingly high levels of exogenous let-7 
(fig. 1d).

LIN28B is dispensable in MYCN-amplified neuroblastoma cell lines

Next, we evaluated the previously reported LIN28B-let-7-MYCN regulatory circuit using 

published lentiviral shRNA constructs to knockdown LIN28B in MYCN-amplified 

neuroblastoma cells and observed comparable suppression of MYCN protein levels and cell 

growth (ED 3a,b). We further observed reduced xenograft tumor growth in cells expressing a 

LIN28B targeting shRNA (ED 3c). However, we did not observe an appreciable de-

repression of let-7 levels upon shRNA-mediated LIN28B knockdown, which is counter to 

the established paradigm (ED 3d). Moreover, we were unable to rescue these effects through 

overexpression of shRNA-resistant LIN28B constructs (ED 3e,f). Together, these data 

suggest that the reported effects of the shRNAs on both cell growth and MYCN protein 

levels might be due to hairpin-induced toxicities.

As an alternative approach to depleting LIN28B, we tested five small interfering RNAs 

(siRNAs) and found that four both effectively knocked down LIN28B and, as expected, de-

repressed let-7 levels (ED 4a–d). Upon extended serial siRNA transfection, we observed that 

despite robust LIN28B knockdown and strong de-repression of let-7, MYCN protein levels 

were unaffected and there was no appreciable effect on cell proliferation (ED 4e–g).

To rule out the possibility of incomplete knockdown resulting in residual LIN28B activity, 

we employed Cas9 and four distinct gRNAs targeting LIN28B (ED 4h). We observed robust 

loss of LIN28B protein with all four gRNA constructs (fig 2a,b), indicating efficient 

disruption of the locus. We did not observe appreciable loss of MYCN protein expression or 

impaired cell growth, thus corroborating our siRNA based results (fig. 2a–d). In addition, the 

let-7 family was robustly de-repressed, consistent with the existing LIN28B/let-7 paradigm 

(fig. 2e,f). These observations indicate that disruption of LIN28B has little net impact on 

MYCN-amplified neuroblastoma cells.
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MYCN is a let-7 sponge in MYCN-amplified neuroblastoma

The persistence of MYCN protein levels despite high levels of transfected let-7a or robust 

de-repression of let-7 upon LIN28B loss prompted us to explore novel mechanisms of let-7 
perturbation. We hypothesized that there might be a ceRNA in MYCN-amplified 

neuroblastoma cells that serves to sponge let-7. To identify potential ceRNAs, we performed 

poly-A selected RNA-sequencing (mRNA-seq) on MYCN-amplified (BE(2)C and Kelly) 

and non-MYCN-amplified (SH-SY5Y) cells. We then determined the relative contribution of 

let-7 target sites provided by expressed let-7 targets. Interestingly, MYCN itself was by far 

the most abundant let-7 target mRNA in both BE(2)C and Kelly cells, alone providing 

19.3% and 18.5% of the entire cellular let-7-target-site pool, respectively. In contrast, 

MYCN represented only 0.15% of the let-7-target-site pool in SH-SY5Y cells (fig. 3a). In 

fact, MYCN mRNA was the 2nd highest expressed mRNA in both BE(2)C and Kelly cells as 

opposed to the 5409th highest in SH-SY5Y, demonstrating an exceptionally high MYCN 
mRNA level in MYCN-amplified cells (>100-fold increase; fig. 3b). Other multiple-let-7-

site mRNAs such as HMGA2, IMP1, and ARID3B were expressed at much lower levels, 

together suggesting that MYCN mRNA might itself be the sponge (ED 5a). This expression 

pattern was validated by qPCR in a panel of additional cell lines (ED 5b).

CeRNA relationships were initially defined in part by similar expression levels between 

RNAs with similar 3′UTRs18,29. Two recent reports have refined this original precept, 

suggesting that for a given miRNA family, the miRNA: mRNA-target ratio is a major 

determinant of how effectively a ceRNA can impact the function of a miRNA family. At low 

ratios, miRNAs are sensitive to moderate levels of ceRNAs, whereas highly expressed 

miRNAs with high ratios are difficult to sponge, requiring very high levels of ceRNA30,31. 

We therefore assessed total copies per cell of both MYCN mRNA and the let-7 family in 

BE(2)C and Kelly cells through quantified mRNA-seq and small-RNA sequencing (sRNA-

seq) (ED6).

We calculated 13,255 and 10,615 MYCN mRNA copies per BE(2)C and Kelly cell, 

respectively, resulting in 26,511 and 21,231 let-7 target sites provided by MYCN (fig. 3c 

upper panel). In stark contrast, there were only 31 MYCN transcripts per SH-SY5Y cell. 

Quantification of the let-7 family in BE(2)C and Kelly cells yielded 7,259 and 1,952 total 

let-7 molecules per cell (fig. 3c lower panel), and MYCN-let-7-site: let-7 miRNA ratios of 

3.65 and 10.88, respectively. These ratios satisfy the tenets of the ratio-based ceRNA model 

and do so as the result of a single amplified mRNA. Interestingly, let-7a was the most highly 

expressed let-7 family member in both cell types, accounting for over half of all let-7 
molecules. These observations were confirmed by spike-in qPCR based quantification of 

both MYCN and let-7 (ED 7a, b). Even upon LIN28B knockout, the MYCN-let-7-site: let-7 
ratio is 1.35 in BE(2)C and 1.78 in Kelly, which remain favorable for ceRNA activity (ED 

7c).

To test the capacity of MYCN mRNA to serve as a let-7 sponge, we co-transfected BE(2)C 

cells with a series of luciferase constructs containing the 3′UTRs of several representative 

let-7 targets and control or MYCN ORF targeting siRNA (ED 8a,b). Luciferase ratios of all 

constructs save for empty vector controls and the let-7-site-mutated MYCN-3′UTR, were 
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significantly reduced by either MYCN knockdown or let-7a transfection (fig. 3d), suggesting 

that the endogenous MYCN-3′UTR sponges steady-state levels of let-7. We then tested the 

sufficiency of the MYCN-3′UTR to de-repress let-7 targets through sponging of a let-7a 
mimic. We co-transfected the above luciferase reporter constructs with chimeric 

RFP:MYCN-3′UTR constructs and assayed luciferase activity (ED 8c,d). Let-7 target 

constructs were rescued when co-transfected with wildtype but not let-7-site-mutant 

MYCN-3′UTR (ED 8e). In addition, exogenous MYCN-3′UTR was sufficient to enhance 

MYCN protein expression itself in SK-N-AS cells (ED 8f).

We next tested if endogenous let-7 targets are sponged. Upon MYCN knockdown, protein 

levels of DICER1, HK2, IMP1, and LIN28B were reduced, while neither mRNA nor let-7 
levels were significantly changed (ED 8a, b, c). Concurrent let-7 inhibition rescued 

expression of the four targets, supporting post-transcriptional suppression through let-7 upon 

MYCN knockdown that is consistent with MYCN mRNA serving as a let-7 sponge (ED 8a). 

Further, these targets were not reduced at the protein level upon LIN28B knockout, which is 

consistent with this model (ED 8d).

Lastly, we analyzed global let-7 target expression in response to depletion of the endogenous 

MYCN 3′UTR. To specifically assess the role of the 3′UTR, we transfected BE(2)C cells 

expressing a MYCN ORF transgene with a MYCN 3′UTR-targeting siRNA (fig. 3e). While 

we did not see a global reduction of let-7 targets as a whole (ED 9e), we did observe 

significantly lower expression of let-7 targets with 3 or more total sites or more than one 

8mer let-7 site in their 3′ UTRs, which together define the most sensitive let-7 targets32,33 

(fig. 3f). Given the regulation of the MYCN 3′ UTR by multiple miRNAs34 and unknown 

kinetics of how let-7 activity is restored after the removal of a ceRNA, we further challenged 

siCon and siMYCN cells with a modest amount of let-7a mimic, increasing cellular let-7 
levels approximately 8 fold (ED 9f). We then observed significantly reduced expression 

across all categories of let-7 targets in siMYCN cells, consistent with increased sensitivity to 

let-7 in the absence of the MYCN 3′ UTR. (fig. 3g, ED 9g).

Let-7 chromosomal loss in neuroblastoma

While neuroblastoma has a low mutation rate, chromosome arm gain and loss is 

frequent23,24. Two of the most common chromosomal losses in neuroblastoma, chromosome 

arm 3p (Chr3p, ~33% incidence) and Chr11q (~45% incidence), often occur together and 

seldom with MYCN-amplification23,35,36 (fig. 4a, ED 10). Upon analysis of Chr3p and 

Chr11q, we noted that the Chr3p-loss smallest region of overlap (SRO) spans from 3p25.3 to 

3p14.337, placing let-7g within the SRO and resulting in its loss whenever Chr3p is lost. In 

addition, the most common breakpoint of Chr11q immediately proximal to the let-7a2 locus, 

resulting in loss of let-7a2 in virtually all Chr11q deletions35 (fig. 4b). Moreover, loss of 

Chr11q in neuroblastoma results in lower overall let-7a levels despite loss of only one of 

three distinct let-7a loci38. These observations suggest that let-7 genetic disruption may be 

selected for in neuroblastoma.

A model in which amplified MYCN sequesters mature let-7 in would predict that selective 

pressure to genetically lose let-7 might be relieved in MYCN-amplified disease. Chr3p 
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(let-7g) and Chr11q (let-7a2) loss patterns are indeed consistent with such a model. To 

investigate whether the extended let-7 family (fig. 4b) follows this loss pattern, we expanded 

our analysis to all eight let-7 genetic loci in 202 neuroblastomas by array comparative 

genomic hybridization (aCGH). We created a heat-map of copy number (CN) estimates for 

each miRNA locus to compare MYCN-amplified CN values to non-amplified and observed 

a significant CN difference for six let-7 loci (fig. 5a, 5b upper panel). At least one let-7 
family member was lost in 63.4% of non-amplified tumors and in only 16.7% of amplified 

(fig. 5b upper panel), resulting in average let-7 CN changes of −1.94 and −0.36 per tumor, 

respectively (fig. 5b lower panel). This pattern of CN loss for let-7 is distinct from the 

unrelated miR-103a family (fig. 5b), suggesting that the let-7 pattern is not reflective of 

general chromosomal patterning.

Let-7a2, let-7f2, and let-7g were most commonly lost, whereas let-7a3/7b and let-7i were 

not significantly lost in any tumor subset. We reasoned that loss frequency might relate to 

initial expression level. To interrogate this possibility, we used publicly available sRNA-seq 

data to examine the relative expression levels of mature let-7 in twelve distinct primary and 

tumor cell lines that have intact let-7 loci (ED 10b). We observed that let-7a, let-7f, and 

let-7g are present at higher relative levels than other let-7 family members, which mirrors 

the CN loss patterns in non-MYCN-amplified neuroblastoma (fig. 5c). MiR-100, the 

miRNA-cluster partner of let-7a2, is more highly expressed than most let-7s and their cluster 

partners, suggesting that the bulk of the let-7a reads may come from the let-7a2/miR-100 
locus (fig. 5c).

A limitation of sRNA-seq is that it cannot distinguish between loci that produce the same 

mature miRNA. Let-7 family members are coordinately transcribed as part of larger host 

transcripts (HTs) from which they are then processed, which allows for locus-specific 

expression analysis7,39,40 (ED 10c). We therefore analyzed relative expression levels of let-7 
HTs in six primary and tumor cell lines. HT levels for let-7a2, 7f2, and 7g were significantly 

higher than other let-7 HTs (ED 10d, fig. 5d), reflecting the pattern of most frequent locus 

loss in non-amplified disease. In addition, analysis of existing human neuroblastoma 

mRNA-seq and microarray datasets revealed lower expression of the let-7a2, let-7f2, and 

let-7g HTs in non-amplified vs. MYCN-amplified tumors, which is consistent with observed 

patterns of CN loss in our aCGH dataset (fig. 5e, ED 10e). Further, MYCN and let-7 
expression are negatively correlated in non-amplified disease, underscoring the importance 

of let-7 disruption in the absence of the MYCN ceRNA34. These data may collectively 

explain both preferential loss of certain let-7 loci and common patterns of chromosomal loss 

in neuroblastoma.

Further underscoring the significance of let-7 suppression is the observation that non-

MYCN-amplified neuroblastoma patients had significantly worse overall survival (OS) if 

there was a let-7 CN loss event (fig 5f top panel). In the rare case where MYCN-

amplification and let-7 CN loss occurred together, OS was dramatically reduced relative to 

the already poor-prognosis of MYCN-amplification (fig. 5f bottom panel), suggesting a 

deleterious synergy between two powerful but typically exclusive mechanisms of functional 

let-7 disruption.
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Of note, one of the tumors in the aCGH dataset had genetic amplification of LIN28B 
(CN=23, fig. 5a). This tumor patterned closely with MYCN-amplified tumors with regard to 

net let-7 loss and tumor stage (IV) despite being 2n for MYCN. This may represent a case 

where LIN28B significantly contributed to neuroblastoma through let-7 suppression similar 

to the reported mouse model of murine-Lin28b driven neuroblastoma12.

Discussion

The known functionality of LIN28B, together with the patterns of genetic deletion of let-7 
and amplified MYCN ceRNA (aceRNA) activity described here establish that 

neuroblastoma employs multiple mechanisms to neutralize let-7, placing let-7 disruption at 

the center of neuroblastoma pathogenesis. We thus propose that let-7 biogenesis and 

function are targeted in neuroblastoma by several disparate mechanisms: high frequency 

genetic loss, LIN28B activity, or MYCN aceRNA (ED 10f). This model has implications for 

our understanding of neuroblastoma pathogenesis, disease modeling, and the rational design 

of therapeutic strategies, and may represent a more general feature of human cancer.

First, our model offers a plausible explanation for the uniquely high MYCN mRNA levels in 

amplified neuroblastoma, which enables both robust expression of MYCN protein and 

adequate copies of a ceRNA sufficient to impair the function of a highly expressed miRNA 

like let-7. Questions may remain about whether an observed >100 fold increase in MYCN 
mRNA, which increases the total let-7 target-sites across the cellular pool of mRNAs by 

only approximately 25%, is sufficient to mediate a ceRNA effect on let-7. However, our 

functional data based on loss of the MYCN 3′UTR, including candidate reporter analysis of 

let-7-site-containing 3′ UTRs and global let-7-target mRNA-seq analysis (fig. 3d–g), 

suggest that MYCN mRNA may be a preferred target that in abundance can sequester and 

impair let-7. Further, in tumors lacking MYCN amplification, our model suggests that 

selective pressure to disrupt let-7 explains the well known, yet unresolved, patterns of 

MYCN-amplification-independent chromosome 3p and 11q loss. AceRNA function of 

MYCN mRNA also accounts for the dispensability of LIN28B in MYCN-amplified cell 

lines, suggesting that LIN28B may serve a redundant let-7 suppressive role.

Our findings suggest that highly expressed 3′UTRs contribute to miRNA deregulation in 

cancer, and therefore both coding and non-coding functions of oncogenic mRNAs should be 

considered in animal tumor modeling. For example, both the TH-MYCN and LSL-
MYCN;Dbh-iCre models of murine neuroblastoma overexpresses the MYCN open reading 

frame and lack 3′UTRs. Notably, the TH-MYCN model has similar patterns of let-7a2, 
let-7f2, and let-7g genetic loss as non-amplified human disease and both models broadly 

downregulate the let-7 family34,41, further suggesting that let-7 disruption is important even 

in the presence of MYCN protein expression. Moreover, a recent report demonstrates that 

high level expression of the BRAF pseudogene, which contains a functional 3′UTR but does 

not encode a protein, is sufficient to induce lymphoma in mice42. Consequently, full-length 

mRNA transgenes may yield more accurate genetic modeling of human tumors in animals.

Lastly, our model establishes let-7 restoration as a key therapeutic goal in neuroblastoma. 

There are few neuroblastoma specific therapies, and attempts to directly target MYCN have 
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met with little success, despite efforts spanning the last 20 years25,26,43. The fact that 

MYCN mRNA has such a strong functional connection to let-7 exposes a valuable 

opportunity to target MYCN itself and provides hope of delivering disease specific therapy 

to the worst prognostic class of neuroblastoma.

We show here that disparate modes of let-7 suppression are selectively and inversely related 

in neuroblastoma. Given that both oncogenic amplification and disruption of let-7 biogenesis 

appear to play central roles in multiple cancer types15,44–47, our model may provide a novel 

organizing principle by which to consider and interrogate genetic events in a broad range of 

tumors.

Methods

Cell culture

BE(2)C (ATCC #CRL-2268), PA-1 (ATCC #CRL-1572), IMR90 (ATCC #CRL-186), SK-N-

AS (ATCC #CRL-2137), SH-SY5Y (ATCC #CRL-2266), 293T(ATCC #11268), SK-N-DZ 

(ATCC #CRL-2149) and Kelly cells (Sigma #92110411-1VL) were maintained in 1:1 

DMEM/F12:MEM media with 10% inactivated fetal calf serum, 1ug/ml penicillin, and 

1U/ml streptomycin. All cell lines were purchased for the purposes of this study, are not 

among commonly misidentified cell lines (per ICLAC), and tested negative for mycoplasma 

contamination.

Plasmids

Turbo-RFP, LIN28B, and MYCN(ORF) cDNAs were subcloned into the pcDNA3.1 

expression vector (Invitrogen). The MYCN 3′UTR was cloned from BE(2)C cDNA and 

subcloned into pcDNA3.1:MYCN to create pcDNA3.1:MYCN/3′UTR. ShRNA-resistant-

LIN28B and pcDNA3.1:MYCN/3′UTR-let-7-site-mutant vectors were made using the 

QuikChange© site-directed-mutagenesis kit (Stratagene) on pcDNA3.1:LIN28B and 

pcDNA3.1:MYCN/3′UTR constructs, respectively. Wildtype and mutant MYCN 3′UTRs 

were subcloned into pcDNA3.1:RFP and psiCHECK2 to create pcDNA3.1:RFP/

MYCN-3′UTRwt and pcDNA3.1:RFP/MYCN’-3′UTRmut as well as 

psiCHECK2:MYCNwt and psiCHECK2:MYCNmut. pIS1:DICER1, pIS1:IGF2BP1, and 

pIS1:Hmga2 were gifts from David Bartel1,2 (Addgene plasmids #21649, #21639, and 

#14785). psiCHECK2-8x-let-7 was a gift from Yukihide Tomari3 (Addgene plasmid 

#20931).

siRNA/let-7 mimic transfections

BE(2)C and Kelly cells were reverse transfected using Lipofectamine 2000© (Life 

Technologies) into 6 well plates using the appropriate siRNA or miRNA mimics (described 

below). Cells were harvested at time-points described for analysis by western or qPCR. 

Growth assays were performed similarly, but in 96 well plates followed by time-point 

specific BrdU growth assay. Global let-7 target analysis: BE(2)C:MYCN-ORF cells co-

transfected with control or MYCN-3′UTR-2 siRNA and either control or let-7a miRNA 

mimic were harvested 48 hours post transfection. Control siRNA (Life Technologies 

#439846). LIN28B siRNAs: ORF1 (Life Technologies #4392420, ID:s52479), ORF2 (Life 
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Technologies #4392420, ID:s52477), 5′UTR (GE Dharmacon Custom LIN28B-

NM_001004317 Duplex siRNA, ON-TARGET Plus, sense: 5′-ACU GGA GAG AGG AGA 
GAA AUU-3′, antisense: 5′-UUU CUC UCC UCU CUC CAG UUU-3′), 3′UTR-1 (GE 

Dharmacon #J-028584-12-0020), 3′UTR-2 (GE Dharmacon Custom LIN28B-

NM_001004317 Duplex siRNA, ON-TARGET Plus, sense: 5′-CAA CAG UGA UUG UGA 
GAA UUU-3′, antisense: 5′-AUU CUC ACA AUC ACU GUU GUU-3′). MYCN siRNAs: 

ORF-1 (Life Technologies #4392420, ID:s9135), ORF-2 (Life Technologies #4392420, 

ID:s9134). Control miRNA mimic (Life Technologies #4464059). let-7a miRNA mimic 

(Life Technologies #4464066, ID:MC10050), let-7a inhibitor (Life Technologies #4464084, 

ID:MH10050).

Luciferase Assays

For the MYCN 3′UTR loss of function assays, BE(2)C cells were reverse co-transfected 

using Lipofectamine 2000© in quadruplicate into 96-well plates with the appropriate 

luciferase vector and either control siRNA, MYCN siRNA or let-7a mimic. 60 hours post-

transfection, luciferase activity was assayed using the Dual Luciferase© Reporter Assay 

System (Promega). For the MYCN 3′ UTR gain of function assays, 293T cells were seeded 

into 96-well plates in quadruplicate and transfected using Lipofectamine 2000© the 

following day with the appropriate luciferase vector, MYCN 3′UTR overexpression vector, 

and either control miRNA mimic or let-7a mimic. Luciferase activity was measured 24 

hours post-transfection as described above.

Immunohistochemistry

Performed on human tumor tissue sections as previously described4 using anti-LIN28B 

antibody (Cell Signaling #4196) at a 1:400 dilution. Patient samples were obtained through 

Boston Children’s Hospital IRB-CRS08-09-0429-2; Immunohistochemical and Molecular 

Analysis of Pediatric Tumors and consent was obtained from all subjects.

Western blotting

Western blots were performed with antibodies against LIN28B (Cell Signaling #4196), 

LIN28A (Cell Signaling #3978), MYCN (Santa Cruz Biotechnology #sc-53993), DICER1 

Santa Cruz #sc-30226), HK2 (Cell Signaling #2867S), IMP1 (Cell Signaling #2852S), tRFP 

(Origene #TA150061), β-TUBULIN (Cell Signaling #2146), and β-ACTIN (Santa Cruz 

Biotechnology #sc-8342).

BrdU growth assay

5000 cells per well were plated on a 96 well plate in quadruplicate for each of three 

independent experiments. Cell proliferation was assayed relative to day zero using the BrdU 

Cell Proliferation Assay Kit (Cell Signaling #6813) according to manufacturers protocol 

following two hour incubation with BrdU.

qPCR

Total RNA was isolated from cells using Trizol© reagent (Life Technologies). For mRNA 

analysis, cDNA was prepared from 1ug RNA using Superscript II© Reverse Transcriptase 

Powers et al. Page 9

Nature. Author manuscript; available in PMC 2017 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Life Technologies) and random hexamers. 20ng of cDNA was then used for qPCR with the 

SYBR© Select Master Mix (Life Technologies). mRNA primers: LIN28B (fwd: GAG TCA 
ATA CGG GTA ACA GGA C, rev: CAC CAC AGT TGT AGC ATC TAT CT) MYCN-1 

(fwd: CGA TTC AGA TGA TGA AGA TGA TGA AG, rev: GAC AGC CTT GGT GTT 
GGA), IGF2BP1 (fwd: CAG TCC AAG ATA GAC GTG CAT AG, rev: CTC AGG GTT 
GTA AAG GGT AAG G), DICER1 (fwd: CTC CTA CCA CTA CAA TAC TAT CAC T, rev: 

GGT CTT CAT AAA GGT GCT TGG T), β-ACTIN (fwd: GAC CCA GAT CAT GTT TGA 
GAC C, rev: CGT AGC ACA GCT TCT CCT TAA T), HMGA2 (fwd: CTG CTC AGG 
AGG AAA CTG AAG, rev: CAC TAA ACC TGG GAC TGT GAA G), ARID3B (fwd: 

CAA GCA GAA TGG TGG TTT GG, rev: ATG GAT GTG GGC AGG TTT AG). For let-7 
analysis, cDNA was prepared using 20ng total RNA and the Taqman© microRNA Reverse 

transcription kit (Life Technologies). 2ng cDNA was then used for qPCR with the Taqman© 

Universal PCR Master Mix (Life Technologies). Taqman© microRNA Assays used (Catalog 

#:4427975): let-7a (ID:000377), let-7b (ID:002619), let-7c (ID:000379) let-7d (ID:002283), 

let-7e (ID:002406), let-7f (ID:000382), let-7g (ID: 002282), let-7i (ID:002221), miR-98 (ID:

000577), U47 control microRNA Assay (ID:001223). For both mRNA and let-7 expression 

analysis, relative expression was determined using the ΔΔCT method, unless otherwise 

noted.

qPCR CPC Analysis

Total RNA per cell was determined by RNA harvest yield from 1.5 x 106 cells. For MYCN 
mRNA copies per cell, cDNA was prepared using 200ng total RNA per cell type and from a 

dose curve of the synthetic MYCN-3′UTR-RNA-fragment (Integrated DNA Technologies) 

with Superscript III© Reverse Transcriptase (Life Technologies) and a MYCN-gene-specific 

primer (MYCN-2 rev). 10% of the cDNA reactions were then used for qPCR as described 

above. Linear regression analysis was performed on MYCN-3′UTR-RNA-fragment-sample 

CT values to determine the copies per reaction in the cell samples. MYCN mRNA copies 

per cell was then calculated based on the total RNA per cell previously determined. 

Synthetic MYCN-3′UTR-RNA-fragment sequence: (5′-TTC CTA GCC TGT TTC TTC 
CTG TTA ATG TAT TTG TTC ATG TTT GGT GCA TAG AAC TGG GTA AAT GCA 
AAG TTC TGT GTT TAA TTT CTT CAA AAT GTA TAT ATT TAG TGC TGC ATC TTA 
TAG CAC TT -3′). MYCN-2 qPCR Primers (fwd: CCT AGC CTG TTT CTT CCT GTT A, 
rev: GTG CTA TAA GAT GCA GCA CTA AAT). A similar strategy was used to determine 

let-7 copies per cell. Synthetic let-7 RNA molecules for each let-7 family member 

(Integrated DNA Technologies) were used in dose curves for cDNA reactions for each let-7. 

cDNA was prepared as described above, and 10% of cDNA reactions were used for qPCR as 

described above. Linear regression analysis of the synthetic-let-7 qPCR CT values and total 

RNA per cell values were used to calculate copies per cell for each let-7 family member.

RNA-Seq analysis

Copies per Cell Analysis: Sequence reads were aligned to the human transcriptome using 

HISAT version 0.1.65. The transcriptome file used for polyA-RNA based libraries consisted 

of protein-coding and ncRNA sequences downloaded from ENSEMBL (release 80) ftp://

ftp.ensembl.org/pub/release-80/fasta/homo_sapiens/, as well as the ERCC control 

sequences. The transcriptome file used for short-RNA based libraries consisted of mature 
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microRNA sequences downloaded from mirBase (release 21: ftp://mirbase.org/pub/

mirbase/), in addition to the synthetic short RNA spike in oligonucleotides (Small RNA 

Spikes: LET7A2-5′SCR:/5Phos/rGrA rArGrA rUrGrU rGrGrU rGrUrU rGrUrA rUrArG 

rUrU, LET7I-5′SCR: 5′Phos-rGrG rUrArG rArUrA rGrUrU rGrUrU rGrUrG rCrUrG 

rUrU, MIR-NEG: 5′Phos-rUrU rArCrG rUrCrG rUrCrG rCrGrU rCrGrU rUrArU rU, 

MIR17-5′SCR: 5′Phos-rArU rCrGrC rCrUrG rArUrA rArArG rUrGrC rArGrG rUrArG, 

JP_MIR-NEG DH1: 5′Phos-rUrC rArCrA rArCrC rUrCrC rUrArG rArArA rGrArG 

rUrArG rA, JP_MIR-NEG DH2: 5′Phos-rUrU rGrUrA rCrUrA rCrArC rArArA rArGrU 

rArCrU rG)6. To estimate transcript abundances, we applied Salmon version 0.3.27 to the 

aligned reads and summarized transcript abundances into gene-level expression levels by 

summing all transcript expression levels mapping to the same gene. Gene-to-transcript 

mappings, and transcript type annotations were downloaded also from ENSEMBL (ftp://

ftp.ensembl.org/pub/release-80/gtf/homo_sapiens/). Unless otherwise stated, all RNA-Seq 

data is presented is Log10(1+TPM), which we refer to as Log(TPM) henceforth. In order to 

estimate the absolute copy number of transcripts per cell, we performed linear regression of 

the spike-in oligonucleotides concentration (Log10) on the Log(TPM) using the lm function 

in R for each sample. Using the slope and intercept estimated by this approach, we 

calculated the copies per cell of endogenous mRNA by determining the number of 

transcripts (based on Log(TPM) values) present in the total ng RNA used for library 

preparation. We then determined molecules per cell based on pre-determined pg RNA per 

cell. Global let-7 target analysis: polyA-selected mRNA sequencing reads were processed as 

above, with no spike in RNAs used. RNA-seq datasets are available under GEO reference 

series GSE81500: (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81500).

Supplemental Methodology: spike controlled quantification of small RNA—
Through comparison to three miRNA spike-ins, including let-7-specific 5′-end-scrambled 

let-7a and let-7i spikes, we sought to minimize the effects of secondary structure bias known 

to exist during sRNA-seq library preparations, which can have significant effects on the 

relative efficiency of reads produced between different microRNAs6 (ED 6). A total of six 

synthetic spikes were used. Disparate reads per million observed among the equimolar small 

RNA spikes (i.e. the miR-Neg, LET7A2, LET7I spikes have much higher read counts than 

equimolar MIR17, miRNegDH1, and miRNegDH2 spikes) demonstrate both the need to use 

spikes similar to the miRNA-of-Interest to accurately determine copies per cell and the risk 

inherent in using a single spike to determine copies per cell for all miRNAs. The use of 

multiple miRNA-specific spikes improves upon previous miRNA quantification strategies 

using a single control miRNA to quantify all miRNAs8 by limiting potential disparate read 

efficiencies between a single spike and the miRNA of interest. Difficulty in calculation of 

relative expression of disparate miRNAs within a single dataset due to such variable read 

efficiencies can therefore be mitigated through the use of spike-ins that closely resemble 

each miRNA of interest.

CRISPR/Cas9

Cas9/gRNA co-expressing lentiviral constructs (lentiCRISPRv2) were generated and 

lentiviral particles were produced as previously described9,10, using protocols and gRNA 

design tools from http://www.genome-engineering.org. Puromycin selection began twenty 
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four hours after lentiviral infection of BE(2)C and Kelly cells. Experiments were typically 

completed within three weeks of initial infection. Oligos used for gRNA cloning: LIN28B 
exon 2: (CAC CGC ATC GAC TGG AAT ATC CAA G, AAA CCT TGG ATA TTC CAG 

TCG ATG C). LIN28B exon 3.1: (CAC CGC AGA GCA AAC TAT TCA TGG A, AAA 

CTC CAT GAA TAG TTT GCT CTG C). LIN28B exon 3.2: (CAC CGA ATG ATT ACC 

TAT CTC CCT T, AAA CAA GGG AGA TAG GTA ATC ATT C). LIN28B exon 4: (CAC 

CGC CTT GTA GAT GCT ACA ACT G, AAA CCA GTT GTA GCA TCT ACA AGG C). 

Cas9/gRNA constructs: lentiCRISPRv2, lentiCRISPR:EGFPsgRNA-1, and 

lentiCRISPR:EGFPsgRNA-2, were gifts from Feng Zhang9,10 (Addgene plasmids #52961, 

#51760, and #51761).

shRNA

Lentiviral particles were prepared as previously described4. pLKO.1 short hairpin expression 

constructs (Sigma Mission shRNA): LIN28B shRNAs (sh1: TRCN0000144508, sequence: 

5′-CCTGTTTAGGAAGTGAAAGAA-3′; sh2: TRCN0000122599, sequence: 5′-

GCCTTGAGTCAATACGGGTAA-3′). Control vector (SHC001:no insert).

Xenografts

BE(2)C and SK-N-DZ cells were infected with either SHC001 or TRCN0000122599 pLKO.

1 lentivirus, then puromycin selected for 48hrs. 1.5E6 infected cells were injected 

subcutaneously into female Rag2 knockout (c57bl/6, 8 weeks old) immune deficient mice. 

Three weeks post injection, mice were sacrificed and tumors were removed and weighed. 

This procedure is approved by the Boston Children’s Hospital Institutional Animal Care and 

Use Committee under protocol #15-12-3071R, which limits xenograft tumor size to less than 

2.0cm.

Array Comparative Genome Hybridization (aCGH) analysis

Preparation of the 202 neuroblastoma aCGH dataset has been previously described11,12. 

MicroRNA-containing loci were analyzed for gain or loss as previously described13. 

Statistical significance between MYCN-amplified and non-amplified tumors was determined 

using t test with Welch’s adjustment on original copy number values. Kaplan-Meyer curve 

generation and analysis was done using GraphPad Prism software.

ENCODE RNA-Seq datasets

Mature let-7 expression data for 12 cell types was obtained from whole cell small-RNA-Seq 

ENCODE/CSHL datasets and let-7 host transcript expression data from 6 cell types was 

obtained from RNA-seq ENCODE datasets on the UCSC Genome Browser14 (http://

genome.ucsc.edu/). Expression levels were determined relative to let-7c and let-7c host 

transcript levels, respectively.

R2 Database

Human neuroblastoma patient microarray and RNA-seq datasets were obtained from the R2: 

microarray analysis and visualization platform (http://r2.amc.nl) and analyzed using 
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GraphPad Prism software. Significance was determined by t test with Welch’s adjustment. 

Datasets used: Kozak (GEO ID: GSE45547), SEQC (GEO ID: GSE62564)

Statistical analysis

Unless otherwise noted, all experiments were performed at least three times independently. 

Statistical tests used are identified in each figure legend. P-values of less than 0.05 were 

considered significant.

Extended Data

Extended Data 1. MYCN is a highly conserved let-7 target
(a) Schematic of human MYCN ORF and 3′UTR, indicating let-7 sites 1 and 2 and their 

approximate location. (b) Predicted base pairing patterns of let-7a, let-7f, and let-7g with 

MYCN let-7 sites #1 and #2. A–G base pairs, common in RNA, are represented by (*). (c) 

Alignments of let-7 sites 1 and 2 in 100 vertebrate MYCN 3′UTRs (ENCODE).
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Extended Data 2. LIN28B expression and function in neuroblastoma
(a) MYCN, LIN28B, and LIN28A mRNA expression levels in neuroblastoma (n = 649, 

Source Data ED) (b) Immunoblot for indicated proteins in human embryonic carcinoma 

cells (PA1), normal human fibroblasts (HF), SK-N-SH (SH), SK-N-AS (AS), SK-N-F1 (F1), 

BE2C (BE), SK-N-DZ (DZ), Kelly (Ke), and human chronic myeloid leukemia cells (K5). 

For gel source data, see Supplemental Figures. (c) Representative LIN28B 

immunohistochemical staining of human neuroblastoma by stage (left panel), percent 

LIN28B positive neuroblastoma by disease stage (right panel). GNB = 

ganglioneuroblastoma. (n = 36) (d) LIN28B expression by neuroblastoma stage (n = 64, 

Source Data ED). (e) Immunoblot for LIN28B in inducible LIN28B SH-SY5Y cells and 

GFP or LIN28B expressing SK-N-AS cells (left panels) and corresponding qPCR analysis 

of relative let-7 family levels (right panel), (mean plus s.e.m. of three independent 

experiments shown). (f) Relative growth rate (BrdU incorporation, right panel) of SH-SY5Y 

and SK-N-AS neuroblastoma cells from d (*p<0.05, n = 3 independent experiments).
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Extended Data 3. Short hairpin knockdown of LIN28B in neuroblastoma
(a) Immunoblot for indicated proteins MYCN and LIN28B in MYCN-amplified cells 

infected with LIN28B targeting lentiviral shRNAs. For gel source data, see Supplemental 

Figures. (b) Cell proliferation analysis of cells described in a. (n = 3 independent 

experiments) (c) Average tumor size of human-mouse subcutaneous xenograft tumor 

analysis three weeks post injection of 2x106 cells infected with a LIN28B targeting lentiviral 

shRNA. (n = 6 mice for BE(2)C, n = 3 mice for SK-N-DZ, Supplemental Figures, Source 

Data ED). (d) qPCR analysis of let-7a, let-7b, and let-7i levels in cells described in a. (mean 

plus s.e.m. of three independent experiments shown) (e) Cell proliferation analysis of 

BE(2)C cells stably expressing red fluorescence protein (RFP), FLAG-tagged LIN28B ORF, 

or shRNA resistant FLAG-tagged LIN28B (LIN28B shRes) infected with LIN28B lentiviral 

shRNAs targeting the LIN28B 3′UTR (ShL28B-UTR) or the LIN28B open-reading frame 

(ShL28B-ORF). Cell counts were performed 7 days after lentiviral shRNA infection. (mean 

plus s.e.m. of three independent experiments shown) (f) Immunoblot for indicated proteins 

in cells described in e. For gel source data, see Supplemental Figures.
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Extended Data 4. Small interfering RNA knockdown of LIN28B in neuroblastoma
(a) Schematic of approximate siRNA target sites within the LIN28B mRNA. (b) qPCR 

analysis of LIN28B mRNA levels in BE(2)C cell 48 hours after transfection with the 

indicated LIN28B targeting siRNAs. (mean of two independent experiments shown) (c) 

Immunoblot analysis of LIN28B in cells from a. For gel source data, see Supplemental 

Figures. (d) qPCR analysis of indicated let-7 levels in cells from a. (mean of two 

independent experiments shown) (e) Immunoblot analysis of MYCN and LIN28B in serially 

transfected MYCN-amplified cells for 6 or 9 days. Identical transfections were performed of 

days 0, 3, and 6. For gel source data, see Supplemental Figures. (f) Day 9 qPCR analysis of 

the let-7 family in the cells from a. (n = 3 independent experiments, mean plus s.e.m. shown) 

(g) Cell growth analysis of day 0 to day 6 cells from a (BrdU incorporation, n = 3 

independent experiments, mean plus s.e.m. shown). (h) Lentiviral CRISPR-Cas9/LIN28B 
gRNA strategy targeting LIN28B at four distinct exon/intron junctions used in b–g.

Extended Data 5. Relative levels of let-7 targets in neuroblastoma
(a) mRNA-seq let-7 target table (as percent let-7 target site pool) (b) qPCR analysis of 

indicated let-7 targets in neuroblastoma cells, PA1 embryonic carcinoma cells (EC), and 
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normal human fibroblasts (hFib). Expression relative to β-ACTIN (ΔCT method) (mean of 

two biologic replicates shown).

Extended Data 6. Heat map of let-7 and small RNA spike reads
Heat map of three BE(2)C and three Kelly sRNA-seq samples depicting the relative reads 

per million of the let-7 family, miR-17, and the six small RNA spikes added in equimolar 

amounts per sample (spikes miR-Neg, LET7A2, and LET7I were used to determine let-7 
copies per cell from the small RNA sequencing dataset). (RPM = reads per million).

Extended Data 7. qPCR quantification of MYCN and let-7 copies per cell
(a) Total let-7 sites per cell provided by MYCN mRNA in BE(2)C, Kelly, normal human 

fibroblasts (NHF), and embryonic carcinoma cells (EC) (mean plus s.e.m. of 3 biologic 

replicates shown). (b) Total let-7 copies per cell in cells from a, presented as stacked graphs 

of all let-7 family members (mean of 3 biologic replicates shown). (c) Total let-7 CPC in 

wildtype or LIN28B knockout BE(2)C and Kelly cells, presented as stacked graphs of all 
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let-7 family members (values derived from let-7 CPC in b and average let-7 fold change 

described in fig. 2f and 2g).

Extended Data 8. Luciferase reporter and gain of function constructs
(a) Luciferase constructs used in the luciferase assays in fig. 3d and ED 8e. (b) Schematic of 

the luciferase transfection protocols used in Figure 3d. (c) Schematic of the luciferase 

protocol used in ED 8e. (d) pcDNA3.1 constructs used in ED 8e, 8f. (e) Top panel: Relative 

luciferase ratio in 293T cells co-transected with the indicated 3′UTR luciferase and 

pcDNA3.1 vectors in the presence of either control miRNA or let-7a mimic. Bottom panel: 

Relative luciferase ratio in 293T cells co-transected with the indicated 3′UTR luciferase and 

pcDNA3.1 vectors in the presence of either a control miRNA or let-7a mimic. Mean of four 

independent experiments plus s.e.m. shown (*p<0.05 relative to E.V., unpaired t-test) (f) 

Immunoblot analysis of MYCN in SK-N-AS cell stably expressing a MYCN ORF+3′UTR 

transgene and transfected with the indicated pcDNA3.1 vector. For gel source data, see 

Supplemental Figures.
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Extended Data 9. MYCN mRNA sponges let-7
(a) Immunoblot analysis of indicated proteins in BE(2)C cells transfected for 2.5 days with 

control, MYCN-1 (M1), or MYCN-2 (M2) siRNA and either control microRNA or let-7a 
inhibitor. For gel source data, see Supplemental Figures. (b) qPCR analysis of DICER1, 

HK2, IMP1, LIN28B, and MYCN in cells transfected as in a. (c) qPCR analysis of let-7a, 

let-7b, and let-7i in BE(2)C cells transfected for 2.5 days with control siRNA, siM1 or siM2. 

(n = 3 independent experiments, mean plus s.e.m. shown) (d) Immunoblot analysis of 

indicated proteins in cells infected with indicated Cas9-gRNA lentivirus. For gel source data, 

see Supplemental Figures. (e) Expression levels of let-7 targets in BE(2)C:MYCN cells 

transfected with siCon or siMYCN-3′UTR. (f) Relative let-7 expression in BE2C:MYCN 
cells co-transfected with siCon or siMYCN (3′UTR) siRNA and miRCon or let-7a mimic. A 

16 fold increase in let-7a results in an approximately 8 fold increase in total let-7, due to 

let-7a making up almost half of the total cellular pool (fig. 3c, lower panel) (g) Relative 

expression levels of let-7 targets in siCon and siMYCN cells transfected with let-7a mimic. 

(data represents one round of mRNA-seq, ***p<0.001, one-tailed Wilcoxon test, GSE81497, 

see Source Data F3).
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Extended Data 10. Neuroblastoma patient and ENCODE data
(a) Detail of the incidence of chromosome 3p21 and 11q23 loss and MYCN amplification as 

determined by analysis of the indicated retrospective chromosomal aberration studies on 

neuroblastoma. (b) List of the ENCODE sRNA-seq samples analyzed (with associated GEO 

Accession numbers) for the relative expression of mature let-7 in figure 5c. (c) List of let-7 
family host transcripts, transcript class, and let-7 location within the transcript. (d) List of 

the ENCODE mRNA-seq samples analyzed (with associated UCSC Submission ID 

numbers) for the relative expression of let-7 host-transcripts in figure 5d. (e) Relative 

expression of let-7a2, let-7f2, and let-7g host genes by microarray in MYCN-amplified and 

non-amplified neuroblastoma. ACTB shown as control. (*p<0.05, **p<0.01, ***p<0.001, 

unpaired t-test, n = 643, Source Data ED). (f) Schematic showing the several mechanisms 

that impair let-7 biogenesis and function in neuroblastoma (chromosome images created at: 

http://www.ncbi.nlm.nih.gov/genome/tools/gdp/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The LIN28B/let-7/MYCN axis is intact in neuroblastoma
(a) pcDNA3.1:MYCN constructs. (b) Immunoblot for indicated proteins in non-MYCN-

amplified neuroblastoma cells transfected indicated constructs. (c) Immunoblot for indicated 

proteins in GFP or LIN28B expressing cells transfected as in b. (d) qPCR analysis of let-7a 
levels and immunoblot for MYCN in MYCN-amplified cells transfected with control or 

let-7a mimic dose curve (data representative of 3 independent experiments). For gel source 

data, see Supplemental Figures.
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Figure 2. LIN28B is dispensable in human MYCN amplified neuroblastoma cells
(a,b) Immunoblot for MYCN and LIN28B in cells infected with indicated Cas9-gRNA 

lentivirus. For gel source data, see Supplemental Figures. (c,d) Cell growth analysis of cells 

infected as in b, c. (BrdU incorporation). (e,f) qPCR analysis of relative let-7 expression in 

cells from b, and c respectively. Fold change relative to GFP gRNA controls. (n = 3 

independent experiments, mean + standard error of the mean (s.e.m.) shown).
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Figure 3. MYCN mRNA is an amplified competing endogenous RNA (aceRNA) for let-7
(a) Let-7-target-site-pool contribution of the top 50 targets. Arrows indicate top two 

contributors (n = 3 biologic replicates, GSE81498, see Source Data F3). (b) Box and 

whisker plot of top 14,000 expressed mRNAs from dataset described in a. MYCN 
expression rank marked by asterisk (GSE81498, see Source Data F3). (c) Top panel: MYCN 
transcripts and let-7-sites-provided per cell as determined by the dataset from a. (mean + 

standard deviation from the mean (s.d.) shown, GSE81498, see Source Data F3) Lower 

panel: let-7 copies per cell as determined sRNA-seq (n = 3 biologic replicates, GSE81499, 

see Source Data F3). (d) Top Panel: Relative fluorescence ratio in BE(2)C cells co-

transected with indicated constructs small RNAs. Bottom panel: Relative fluorescence ratio 

in cells co-transfected with indicated constructs and small RNAs. Mean of four independent 

experiments plus s.e.m. (*p<0.05 relative to E.V., unpaired t-test) (e) mRNA-seq reads 

mapping to the MYCN locus in BE(2)C:MYCN cells transfected with indicated siRNAs. 

Blue and red boxes indicate MYCN ORF and UTRs, respectively. Triangles mark reduction 

of MYCN mRNA untranslated regions. (f) Expression levels of mRNAs with 1, 2, or 3+ 

let-7 sites (left panel) or with 1 or 2+ 8mer let-7 sites (right panel) in siCon and siMYCN 
cells (data represents one round of mRNA-seq, ***p<0.0001, one-tailed Wilcoxon test). (g) 

Relative expression of mRNAs with 1, 2, or 3+ let-7 sites (left panel) or with 1 or 2+ 8mer 

let-7 sites (right panel) in siCon and siMYCN cells co-transfected with let-7a. Values 
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relative miRCon. (data represents one round of mRNA-seq, *p<0.05, **p<0.001, 

***p<0.001 vs. siCon, one-tailed Wilcoxon test, GSE81497, see Source Data F3).
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Figure 4. Let-7a2 and let-7g are commonly lost in neuroblastoma
(a) Scaled Venn diagram assembled from Pugh, et. al., (2013) detailing relative incidence 

and intersection of chromosome 11q and 3p loss and MYCN amplification.. (b) Genetic 

locations of 12 distinct let-7 family members. Green triangles let-7 loci. Red boxes indicate 

the SRO for these deletions. (Images created at: http://www.ncbi.nlm.nih.gov/genome/tools/

gdp/).
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Figure 5. The MYCN aceRNA model predicts let-7 chromosomal loss patterns in neuroblastoma
(a) let-7 and miR-103a loci CN heat map based on aCGH relative fluorescence ratios of 

tumor vs. germline. (Source Data F5). (b) CN loss incidence for let-7 and miR-103a from 

dataset in a (upper panel). Average CN change for the two miRNA families (lower panel). 

(*p<0.05, **p<0.01, ***p<0.001 amp vs. non for each locus, unpaired t-test, Source Data 

F5) (c) Mature let-7 expression based on ENCODE sRNA-seq data. (*p<0.05, **p<0.01, 

***p<0.001 vs. let-7c, Wilcoxon test, Source Data F5) (d) Relative let-7 host transcript 

levels based on ENCODE mRNA-seq data. (*p<0.05, **p<0.01 vs. let-7c, Wilcoxon test, 

Source Data 3) (e) Relative expression of indicated host genes in MYCN-amplified and non-

amplified neuroblastoma. β-TUB shown as control. (n = 498, **p<0.01, ***p<0.001, 

unpaired t-test, Source Data F5). (f) Overall survival curves of neuroblastoma patients in 

non-amplified (top panel), and MYCN-amplified (bottom panel) neuroblastoma. p-values 

determined by Mantel-Cox test (Source Data F5).
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