1,256 research outputs found
Aspects of the Mass Distribution of Interstellar Dust Grains in the Solar System from In-Situ Measurements
The in-situ detection of interstellar dust grains in the Solar System by the
dust instruments on-board the Ulysses and Galileo spacecraft as well as the
recent measurements of hyperbolic radar meteors give information on the
properties of the interstellar solid particle population in the solar vicinity.
Especially the distribution of grain masses is indicative of growth and
destruction mechanisms that govern the grain evolution in the interstellar
medium. The mass of an impacting dust grain is derived from its impact velocity
and the amount of plasma generated by the impact. Because the initial velocity
and the dynamics of interstellar particles in the Solar System are well known,
we use an approximated theoretical instead of the measured impact velocity to
derive the mass of interstellar grains from the Ulysses and Galileo in-situ
data. The revised mass distributions are steeper and thus contain less large
grains than the ones that use measured impact velocities, but large grains
still contribute significantly to the overall mass of the detected grains. The
flux of interstellar grains with masses is determined to
be . The comparison of radar data
with the extrapolation of the Ulysses and Galileo mass distribution indicates
that the very large () hyperbolic meteoroids detected by
the radar are not kinematically related to the interstellar dust population
detected by the spacecraft.Comment: 14 pages, 11 figures, to appear in JG
In Situ Measurements of Interstellar Dust
We present the mass distribution of interstellar grains measured in situ by
the Galileo and Ulysses spaceprobes as cumulative flux. The derived in situ
mass distribution per logarithmic size interval is compared to the distribution
determined by fitting extinction measurements. Large grains measured in situ
contribute significantly to the overall mass of dust in the local interstellar
cloud. The problem of a dust-to-gas mass ratio that contradicts cosmic
abundances is discussed.Comment: 4 pages and two figure
Galileo dust data from the jovian system: 2000 to 2003
The Galileo spacecraft was orbiting Jupiter between Dec 1995 and Sep 2003.
The Galileo dust detector monitored the jovian dust environment between about 2
and 370 R_J (jovian radius R_J = 71492 km). We present data from the Galileo
dust instrument for the period January 2000 to September 2003. We report on the
data of 5389 particles measured between 2000 and the end of the mission in
2003. The majority of the 21250 particles for which the full set of measured
impact parameters (impact time, impact direction, charge rise times, charge
amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in
radius), most of them originating from Jupiter's innermost Galilean moon Io.
Their impact rates frequently exceeded 10 min^-1. Surprisingly large impact
rates up to 100 min^-1 occurred in Aug/Sep 2000 when Galileo was at about 280
R_J from Jupiter. This peak in dust emission appears to coincide with strong
changes in the release of neutral gas from the Io torus. Strong variability in
the Io dust flux was measured on timescales of days to weeks, indicating large
variations in the dust release from Io or the Io torus or both on such short
timescales. Galileo has detected a large number of bigger micron-sized
particles mostly in the region between the Galilean moons. A surprisingly large
number of such bigger grains was measured in March 2003 within a 4-day interval
when Galileo was outside Jupiter's magnetosphere at approximately 350 R_J
jovicentric distance. Two passages of Jupiter's gossamer rings in 2002 and 2003
provided the first actual comparison of in-situ dust data from a planetary ring
with the results inferred from inverting optical images.Comment: 59 pages, 13 figures, 6 tables, submitted to Planetary and Space
Scienc
OPTIMIST: A new conflict resolution algorithm for ACT-R.
Several studies have suggested recently that a more dynamic conflict resolution mechanism in the ACT-R cognitive architecture (Anderson & Lebiere, 1998) could improve the decision-making behaviour of cognitive models. This part of ACT-R theory is revisited and a new solution is proposed. The new algorithm (OPTIMIST) has been implemented as an overlay to the ACT-R architecture, and can be used as an alternative mechanism. The operation of the new algorithm is tested in a model of the classical Yerkes and Dodson experiement of animals' learning. When OPTIMIST is used, the resulting model fits the data better than the previous model (e.g. R2 (R squared) increases from .85 to .93 in one example)
EBF1-deficient bone marrow stroma elicits persistent changes in HSC potential
Crosstalk between mesenchymal stromal cells (MSCs) and hematopoietic stem cells (HSCs) is essential for hematopoietic homeostasis and lineage output. Here, we investigate how transcriptional changes in bone marrow (BM) MSCs result in long-lasting effects on HSCs. Single-cell analysis of Cxcl12-abundant reticular (CAR) cells and PDGFRα+Sca1+ (PαS) cells revealed an extensive cellular heterogeneity but uniform expression of the transcription factor gene Ebf1. Conditional deletion of Ebf1 in these MSCs altered their cellular composition, chromatin structure and gene expression profiles, including the reduced expression of adhesion-related genes. Functionally, the stromal-specific Ebf1 inactivation results in impaired adhesion of HSCs, leading to reduced quiescence and diminished myeloid output. Most notably, HSCs residing in the Ebf1-deficient niche underwent changes in their cellular composition and chromatin structure that persist in serial transplantations. Thus, genetic alterations in the BM niche lead to long-term functional changes of HSCs
LFP beta amplitude is predictive of mesoscopic spatio-temporal phase patterns
Beta oscillations observed in motor cortical local field potentials (LFPs)
recorded on separate electrodes of a multi-electrode array have been shown to
exhibit non-zero phase shifts that organize into a planar wave propagation.
Here, we generalize this concept by introducing additional classes of patterns
that fully describe the spatial organization of beta oscillations. During a
delayed reach-to-grasp task in monkey primary motor and dorsal premotor
cortices we distinguish planar, synchronized, random, circular, and radial
phase patterns. We observe that specific patterns correlate with the beta
amplitude (envelope). In particular, wave propagation accelerates with growing
amplitude, and culminates at maximum amplitude in a synchronized pattern.
Furthermore, the occurrence probability of a particular pattern is modulated
with behavioral epochs: Planar waves and synchronized patterns are more present
during movement preparation where beta amplitudes are large, whereas random
phase patterns are dominant during movement execution where beta amplitudes are
small
Asymptotic theory for a moving droplet driven by a wettability gradient
An asymptotic theory is developed for a moving drop driven by a wettability
gradient. We distinguish the mesoscale where an exact solution is known for the
properly simplified problem. This solution is matched at both -- the advancing
and the receding side -- to respective solutions of the problem on the
microscale. On the microscale the velocity of movement is used as the small
parameter of an asymptotic expansion. Matching gives the droplet shape,
velocity of movement as a function of the imposed wettability gradient and
droplet volume.Comment: 8 fig
- …