1,179 research outputs found
Galileo dust data from the jovian system: 2000 to 2003
The Galileo spacecraft was orbiting Jupiter between Dec 1995 and Sep 2003.
The Galileo dust detector monitored the jovian dust environment between about 2
and 370 R_J (jovian radius R_J = 71492 km). We present data from the Galileo
dust instrument for the period January 2000 to September 2003. We report on the
data of 5389 particles measured between 2000 and the end of the mission in
2003. The majority of the 21250 particles for which the full set of measured
impact parameters (impact time, impact direction, charge rise times, charge
amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in
radius), most of them originating from Jupiter's innermost Galilean moon Io.
Their impact rates frequently exceeded 10 min^-1. Surprisingly large impact
rates up to 100 min^-1 occurred in Aug/Sep 2000 when Galileo was at about 280
R_J from Jupiter. This peak in dust emission appears to coincide with strong
changes in the release of neutral gas from the Io torus. Strong variability in
the Io dust flux was measured on timescales of days to weeks, indicating large
variations in the dust release from Io or the Io torus or both on such short
timescales. Galileo has detected a large number of bigger micron-sized
particles mostly in the region between the Galilean moons. A surprisingly large
number of such bigger grains was measured in March 2003 within a 4-day interval
when Galileo was outside Jupiter's magnetosphere at approximately 350 R_J
jovicentric distance. Two passages of Jupiter's gossamer rings in 2002 and 2003
provided the first actual comparison of in-situ dust data from a planetary ring
with the results inferred from inverting optical images.Comment: 59 pages, 13 figures, 6 tables, submitted to Planetary and Space
Scienc
Theoretical model for mass transport and adsorption of gases in porous solids based on the frequency response method
Detailed knowledge of mass transport and adsorption is one of the key factors in the development of
novel high-performance porous materials for a wide range of technical applications. In the course of an
optimization process, a quick conclusion on the properties of the pore system and its accessibility for
certain sample molecules is crucial. On the other hand, predictions about the pore system can save steps
in material development
Ion-acoustic solitary waves and shocks in a collisional dusty negative ion plasma
We study the effects of ion-dust collisions and ion kinematic viscosities on
the linear ion-acoustic instability as well as the nonlinear propagation of
small amplitude solitary waves and shocks (SWS) in a negative ion plasma with
immobile charged dusts. {The existence of two linear ion modes, namely the
`fast' and `slow' waves is shown, and their properties are analyzed in the
collisional negative ion plasma.} {Using the standard reductive perturbation
technique, we derive a modified Korteweg-de Vries-Burger (KdVB) equation which
describes the evolution of small amplitude SWS.} {The profiles of the latter
are numerically examined with parameters relevant for laboratory and space
plasmas where charged dusts may be positively or negatively charged.} It is
found that negative ion plasmas containing positively charged dusts support the
propagation of SWS with negative potential. However, the perturbations with
both positive and negative potentials may exist when dusts are negatively
charged. The results may be useful for the excitation of SWS in laboratory
negative ion plasmas as well as for observation in space plasmas where charged
dusts may be positively or negatively charged.Comment: 13 pages, 9 figures; To appear in Physical Review
One year of Galileo dust data from the Jovian system: 1996
The dust detector system onboard Galileo records dust impacts in circumjovian
space since the spacecraft has been injected into a bound orbit about Jupiter
in December 1995. This is the sixth in a series of papers dedicated to
presenting Galileo and Ulysses dust data. We present data from the Galileo dust
instrument for the period January to December 1996 when the spacecraft
completed four orbits about Jupiter (G1, G2, C3 and E4). Data were obtained as
high resolution realtime science data or recorded data during a time period of
100 days, or via memory read-outs during the remaining times. Because the data
transmission rate of the spacecraft is very low, the complete data set (i. e.
all parameters measured by the instrument during impact of a dust particle) for
only 2% (5353) of all particles detected could be transmitted to Earth; the
other particles were only counted. Together with the data for 2883 particles
detected during Galileo's interplanetary cruise and published earlier, complete
data of 8236 particles detected by the Galileo dust instrument from 1989 to
1996 are now available. The majority of particles detected are tiny grains
(about 10 nm in radius) originating from Jupiter's innermost Galilean moon Io.
These grains have been detected throughout the Jovian system and the highest
impact rates exceeded . A small number of grains has been
detected in the close vicinity of the Galilean moons Europa, Ganymede and
Callisto which belong to impact-generated dust clouds formed by (mostly
submicrometer sized) ejecta from the surfaces of the moons (Kr\"uger et al.,
Nature, 399, 558, 1999). Impacts of submicrometer to micrometer sized grains
have been detected thoughout the Jovian system and especially in the region
between the Galilean moons.Comment: accepted for Planetary and Space Science, 33 pages, 6 tables, 10
figure
Binaural Interaction in the Nucleus Laminaris of the Barn Owl : A Quantitative Model
A quantitative, neuronal model is proposed for the computation of interaural time difference (ITD) in the auditory system of the barn owl. The model uses a general, probabilistic approach, and is composed of two stages, the characteristics of which are based on anatomical and physiological evidence. Excitatory inputs from both ears, phase-locked to the waveform of tonal stimuli, together with phase-independent inhibitory inputs are summated linearly. The result is transformed into a probability of spike generation by a sigmoid nonlinearity, constituting a stochastic, ’soft’ threshold with saturation. The model incorporates inhibition as a control parameter on the nonlinearity, and includes the usual crosscorrelation-type models as a special case. It has a minimum number of parameters, the values of which can be estimated from physiological data in a straightforward manner. This simple, general model accounts for the binaural response properties of physiologically recorded neurons. In particular, it explains the experimentally observed ITD-tuning and the increase of phase-locking from input to output neurons. The model predicts that a decrease in inhibition causes a non-monotonic change in sensitivity to ITD
Asymptotic theory for a moving droplet driven by a wettability gradient
An asymptotic theory is developed for a moving drop driven by a wettability
gradient. We distinguish the mesoscale where an exact solution is known for the
properly simplified problem. This solution is matched at both -- the advancing
and the receding side -- to respective solutions of the problem on the
microscale. On the microscale the velocity of movement is used as the small
parameter of an asymptotic expansion. Matching gives the droplet shape,
velocity of movement as a function of the imposed wettability gradient and
droplet volume.Comment: 8 fig
Four years of Ulysses dust data: 1996 to 1999
The Ulysses spacecraft is orbiting the Sun on a highly inclined ellipse (, perihelion distance 1.3 AU, aphelion distance 5.4 AU). Between
January 1996 and December 1999 the spacecraft was beyond 3 AU from the Sun and
crossed the ecliptic plane at aphelion in May 1998. In this four-year period
218 dust impacts were recorded with the dust detector on board. We publish and
analyse the complete data set of both raw and reduced data for particles with
masses to g. Together with 1477 dust impacts
recorded between launch of Ulysses and the end of 1995 published earlier
\cite{gruen1995c,krueger1999b}, a data set of 1695 dust impacts detected with
the Ulysses sensor between October 1990 and December 1999 is now available. The
impact rate measured between 1996 and 1999 was relatively constant with about
0.2 impacts per day. The impact direction of the majority of the impacts is
compatible with particles of interstellar origin, the rest are most likely
interplanetary particles. The observed impact rate is compared with a model for
the flux of interstellar dust particles. The flux of particles several
micrometers in size is compared with the measurements of the dust instruments
on board Pioneer 10 and Pioneer 11 beyond 3 AU (Humes 1980, JGR, 85,
5841--5852, 1980). Between 3 and 5 AU, Pioneer results predict that Ulysses
should have seen five times more ( sized) particles than
actually detected.Comment: accepted by Planetary and Space Science, 22 pages, 8 figures (1
colour figure
Origins of Solar System Dust Beyond Jupiter
The measurements of cosmic interplanetary dust by the instruments on board the Pioneer 10 and 11 spacecraft contain the dynamical signature of dust generated by Edgeworth-Kuiper Belt objects, as well as short period Oort Cloud comets and short period Jupiter family comets. While the dust concentration detected between Jupiter and Saturn is mainly due to the cometary components, the dust outside Saturn's orbit is dominated by grains originating from the Edgeworth-Kuiper Belt. In order to sustain a dust concentration that accounts for the Pioneer measurements, short period external Jupiter family comets, on orbits similar to comet 29P/Schwassmann-Wachmann-1, have to produce of dust grains with sizes between 0.01 and . A sustained production rate of has to be provided by short period Oort cloud comets on 1P/Halley-like orbits. The comets can not, however, account for the dust flux measured outside Saturn's orbit. The measurements there can only be explained by a generation of dust grains in the Edgeworth-Kuiper belt by mutual collisions of the source objects and by impacts of interstellar dust grains onto the objects' surfaces. These processes have to release in total of dust from the Edgeworth Kuiper belt objects in order to account for the amount of dust found by Pioneer beyond Saturn, making the Edgeworth-Kuiper disk the brightest extended feature of the Solar System when observed from afar
Existence of solutions for a higher order non-local equation appearing in crack dynamics
In this paper, we prove the existence of non-negative solutions for a
non-local higher order degenerate parabolic equation arising in the modeling of
hydraulic fractures. The equation is similar to the well-known thin film
equation, but the Laplace operator is replaced by a Dirichlet-to-Neumann
operator, corresponding to the square root of the Laplace operator on a bounded
domain with Neumann boundary conditions (which can also be defined using the
periodic Hilbert transform). In our study, we have to deal with the usual
difficulty associated to higher order equations (e.g. lack of maximum
principle). However, there are important differences with, for instance, the
thin film equation: First, our equation is nonlocal; Also the natural energy
estimate is not as good as in the case of the thin film equation, and does not
yields, for instance, boundedness and continuity of the solutions (our case is
critical in dimension in that respect)
Migration of Interplanetary Dust
We numerically investigate the migration of dust particles with initial
orbits close to those of the numbered asteroids, observed trans-Neptunian
objects, and Comet Encke. The fraction of silicate asteroidal particles that
collided with the Earth during their lifetime varied from 1.1% for 100 micron
particles to 0.008% for 1 micron particles. Almost all asteroidal particles
with diameter d>4 microns collided with the Sun. The peaks in the migrating
asteroidal dust particles' semi-major axis distribution at the n:(n+1)
resonances with Earth and Venus and the gaps associated with the 1:1 resonances
with these planets are more pronounced for larger particles. The probability of
collisions of cometary particles with the Earth is smaller than for asteroidal
particles, and this difference is greater for larger particles.Comment: Annals of the New York Academy of Sciences, 15 pages, 8 Figures,
submitte
- …