In this paper, we prove the existence of non-negative solutions for a
non-local higher order degenerate parabolic equation arising in the modeling of
hydraulic fractures. The equation is similar to the well-known thin film
equation, but the Laplace operator is replaced by a Dirichlet-to-Neumann
operator, corresponding to the square root of the Laplace operator on a bounded
domain with Neumann boundary conditions (which can also be defined using the
periodic Hilbert transform). In our study, we have to deal with the usual
difficulty associated to higher order equations (e.g. lack of maximum
principle). However, there are important differences with, for instance, the
thin film equation: First, our equation is nonlocal; Also the natural energy
estimate is not as good as in the case of the thin film equation, and does not
yields, for instance, boundedness and continuity of the solutions (our case is
critical in dimension 1 in that respect)