13 research outputs found

    Kinematic and Kinetic Characteristics of Repetitive Countermovement Jumps with Accentuated Eccentric Loading.

    Get PDF
    Two methods for challenging the musculoskeletal and nervous systems to better exploit the stretch-shortening cycle (SSC) mechanism during plyometric training are reactive strength exercises and accentuated eccentric loading (AEL). Combining repetitive, reactive jumping with AEL poses a novel approach, in which the effects of both methods may be combined to elicit a unique stimulus. This study compared kinematic, kinetic, and electromyographic variables between a control (CON1) and two AEL conditions (AEL2 and AEL3). Additionally, non-reactive and reactive jumps performed within these sets were compared. Participants performed two sets of six countermovement jumps (CMJ) under each loading condition. AEL3 had moderate to large positive effects (es) on peak and mean eccentric force (es = 1.1, 0.8, respectively; both p < 0.01), and eccentric loading rate (es = 0.8, p < 0.01), but no effect on concentric variables or muscle activation intensity. The effects of AEL2 were similar but smaller. With or without AEL, there were moderate to large positive effects associated with reactive CMJ (second jump in a set, compared to the first) on peak and mean eccentric velocity (es = 1.7, 0.8, respectively; both p < 0.01), peak and mean eccentric force (es = 1.3, 1.2, p < 0.01), eccentric loading rate (es = 1.3, p < 0.01) and muscle activity (es = 1.8–1.9, p < 0.01). Concentric variables did not differ. Thus, the flight phase and act of landing during reactive jumps elicited greater increases in eccentric forces, loading rates, and muscle activity than AEL. Nonetheless, kinetic variables were greatest when AEL was combined with reactive jumping. Considering the limitations or complexity associated with most AEL protocols, sets of repetitive (reactive) CMJ may be more pragmatic for augmenting eccentric kinetic variables and neuromuscular stimuli during training

    Procédés de chimie en flux pour la fonctionnalisation catalytique de dérivés de la biomasse

    No full text
    In order to move towards a more sustainable synthetic chemistry, it is now necessary to synthesize intermediates and high value-added products from biomass substrates rather than from fossil resources. Furthermore, the valorization of agricultural waste is one of the keystones of a circular economy. In this sense, furfural has been listed as a promising platform that can be obtained from food crop residues and wood industry waste. Indeed, the dehydration of lignocellulose from these agricultural wastes gives access to furanic derivatives. Their selective functionalization is currently an emerging field and is the subject of many research efforts. In particular, the activation and direct functionalization of C–H bonds catalyzed by transition metals has become essential to develop step and atom economical syntheses. Moreover, the use of heterogeneous catalysts for this purpose is more in line with the principles of a greener chemistry by allowing, in addition to the easy recycling of the used catalyst, a better purification of the obtained product. Furthermore, the combination of heterogeneous catalysis with flow chemistry technology offers a very powerful tool for large-scale applications. In this manuscript, we report the C3-functionalization of furfurylimines by homogeneous ruthenium catalysis in continuous flow. Then, the heterogenization of ruthenium and palladium catalysts was studied in order to develop functionalizations in heterogeneous flow catalysis of furfural derivatives. In this direction, promising results have been obtained for the C5-arylation of furfural with a palladium catalyst supported on mesoporous silica and a continuous flow application has been successfully developped.Afin d’évoluer vers une chimie de synthĂšse plus durable, il est aujourd’hui nĂ©cessaire de synthĂ©tiser des intermĂ©diaires et des produits Ă  haute valeur ajoutĂ©e Ă  partir de substrats provenant de la biomasse plutĂŽt que de ressources fossiles. En outre, la valorisation des dĂ©chets agricoles est l’une des clĂ©s de voĂ»te d’une Ă©conomie circulaire. Dans ce sens, le furfural a Ă©tĂ© rĂ©pertoriĂ© comme une plateforme prometteuse qui peut ĂȘtre obtenue Ă  partir de rĂ©sidus de cultures alimentaires et de dĂ©chets de l'industrie du bois. En effet, la dĂ©shydratation de la lignocellulose de ces dĂ©chets agricoles donne accĂšs Ă  des dĂ©rivĂ©s furaniques. Leur fonctionnalisation sĂ©lective est actuellement un domaine Ă©mergent et fait l'objet de nombreux efforts de recherche. En particulier, l'activation et la fonctionnalisation directe des liaisons C–H catalysĂ©es par des mĂ©taux de transition est devenue essentielle pour dĂ©velopper des synthĂšses Ă©conomiques en Ă©tapes et en atomes. Par ailleurs, l’utilisation Ă  cette fin de catalyseurs hĂ©tĂ©rogĂšnes rĂ©pond d’avantage aux principes d’une chimie plus verte en permettant, outre le recyclage aisĂ© du catalyseur usagĂ©, une meilleure purification du produit obtenu. En outre, la combinaison de la catalyse hĂ©tĂ©rogĂšne avec la technologie de la chimie par flux continu offre un outil trĂšs puissant pour des applications Ă  grande Ă©chelle. Dans ce manuscrit, nous rapportons la C3-fonctionnalisation de furfurylimines par catalyse homogĂšne au ruthĂ©nium en flux continu. Puis, l’hĂ©tĂ©rogĂ©nĂ©isation de catalyseurs au ruthĂ©nium et au palladium a Ă©tĂ© Ă©tudiĂ©e en vue de dĂ©velopper des fonctionnalisations en catalyse hĂ©tĂ©rogĂšne en flux de dĂ©rivĂ©s du furfural. Dans ce sens, des rĂ©sultats prometteurs ont Ă©tĂ© obtenus pour la C5-arylation du furfural avec un catalyseur de palladium supportĂ© sur de la silice mĂ©soporeuse et une application en flux continu a pu ĂȘtre rĂ©alisĂ©e avec succĂš
    corecore