2,080 research outputs found
Magnetic dipole induced guided vortex motion
We present evidence of magnetically controlled guided vortex motion in a
hybrid superconductor/ferromagnet nanosystem consisting of an Al film on top of
a square array of permalloy square rings. When the rings are magnetized with an
in-plane external field H, an array of point-like dipoles with moments
antiparallel to H, is formed. The resulting magnetic template generates a
strongly anisotropic pinning potential landscape for vortices in the
superconducting layer. Transport measurements show that this anisotropy is able
to confine the flux motion along the high symmetry axes of the square lattice
of dipoles. This guided vortex motion can be either re-routed by 90 degrees by
simply changing the dipole orientation or even strongly suppressed by inducing
a flux-closure magnetic state with very low stray fields in the rings.Comment: 5 pages, 3 figure
Transformation of electromagnetically induced transparency into absorption in a thermal potassium optical cell with spin preserving coating
We report a new experimental approach where an order of magnitude enhancement of the electromagnetically induced absorption (EIA) resonance contrast, thus making it similar to that of the EIT resonance contrast is observed under the same conditions. The EIA signal results from the interaction of a weak probe beam with a ground state that has been driven by the pump (counter-propagating) beam. Probe absorption spectra are presented where the laser frequency is slowly detuned over the D 1 line of 39 K vapor contained in a cell with a PDMS antirelaxation coating. In addition to the frequency detuning, a magnetic field orthogonal to the laser beams is scanned around zero value at a higher rate. With both laser beams linearly polarized, an EIT resonance is observed. However, changing the pump beam polarization from linear to circular reverses the resonance signal from EIT to EIA
Stationary entanglement between two movable mirrors in a classically driven Fabry-Perot cavity
We consider a Fabry-Perot cavity made by two moving mirrors and driven by an
intense classical laser field. We show that stationary entanglement between two
vibrational modes of the mirrors, with effective mass of the order of
micrograms, can be generated by means of radiation pressure. The resulting
entanglement is however quite fragile with respect to temperature.Comment: 15 pages, 3 figure
The missed constitutional reform and its possible impact on the sustainability of the italian national health service
The rejection of the Constitutional Law Bill No.1429-D in the December 2016 referendum, has stimulated a cause for reflection on current health legislation and the future prospects of the Italian National Health Service; also in the context of the recent approval of the new Essential Levels of care (LEA) and other relevant laws approved by the Parliament. This article analyzes possible future legislative and organizational scenarios with particular regard to issues related to National health system’s sustainability
Conversion of bright magneto-optical resonances into dark at fixed laser frequency for D2 excitation of atomic rubidium
Nonlinear magneto-optical resonances on the hyperfine transitions belonging
to the D2 line of rubidium were changed from bright to dark resonances by
changing the laser power density of the single exciting laser field or by
changing the vapor temperature in the cell. In one set of experiments atoms
were excited by linearly polarized light from an extended cavity diode laser
with polarization vector perpendicular to the light's propagation direction and
magnetic field, and laser induced fluorescence (LIF) was observed along the
direction of the magnetic field, which was scanned. A low-contrast bright
resonance was observed at low laser power densities when the laser was tuned to
the Fg=2 --> Fe=3 transition of Rb-87 and near to the Fg=3 --> Fe=4 transition
of Rb-85. The bright resonance became dark as the laser power density was
increased above 0.6mW/cm2 or 0.8 mW/cm2, respectively. When the Fg=2 --> Fe=3
transition of Rb-87 was excited with circularly polarized light in a second set
of experiments, a bright resonance was observed, which became dark when the
temperature was increased to around 50C. The experimental observations at room
temperature could be reproduced with good agreement by calculations based on a
theoretical model, although the theoretical model was not able to describe
measurements at elevated temperatures, where reabsorption was thought to play a
decisive role. The model was derived from the optical Bloch equations and
included all nearby hyperfine components, averaging over the Doppler profile,
mixing of magnetic sublevels in the external magnetic field, and a treatment of
the coherence properties of the exciting radiation field.Comment: 9 pages, 7 figure
A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells
We have manufactured more than 250 nominally identical paraffin-coated Cs
vapor cells (30 mm diameter bulbs) for multi-channel atomic magnetometer
applications. We describe our dedicated cell characterization apparatus. For
each cell we have determined the intrinsic longitudinal, \sGamma{01}, and
transverse, \sGamma{02}, relaxation rates. Our best cell shows
\sGamma{01}/2\pi\approx 0.5 Hz, and \sGamma{02}/2\pi\approx 2 Hz. We find a
strong correlation of both relaxation rates which we explain in terms of
reservoir and spin exchange relaxation. For each cell we have determined the
optimal combination of rf and laser powers which yield the highest sensitivity
to magnetic field changes. Out of all produced cells, 90% are found to have
magnetometric sensitivities in the range of 9 to 30 fTHz. Noise analysis shows
that the magnetometers operated with such cells have a sensitivity close to the
fundamental photon shot noise limit
Cascade coherence transfer and magneto-optical resonances at 455 nm excitation of Cesium
We present and experimental and theoretical study of nonlinear
magneto-optical resonances observed in the fluorescence to the ground state
from the 7P_{3/2} state of cesium, which was populated directly by laser
radiation at 455 nm, and from the 6P_{1/2} and 6P_{3/2} states, which were
populated via cascade transitions that started from the 7P_{3/2} state and
passed through various intermediate states. The laser-induced fluorescence
(LIF) was observed as the magnetic field was scanned through zero. Signals were
recorded for the two orthogonal, linearly polarized components of the LIF. We
compared the measured signals with the results of calculations from a model
that was based on the optical Bloch equations and averaged over the Doppler
profile. This model was adapted from a model that had been developed for D_1
and D_2 excitation of alkali metal atoms. The calculations agree quite well
with the measurements, especially when taking into account the fact that some
experimental parameters were only estimated in the model.Comment: small changes to text of previous version; 12 pages, 8 figure
- …
