13 research outputs found

    Trace formula for dielectric cavities II: Regular, pseudo-integrable, and chaotic examples

    Get PDF
    Dielectric resonators are open systems particularly interesting due to their wide range of applications in optics and photonics. In a recent paper [PRE, vol. 78, 056202 (2008)] the trace formula for both the smooth and the oscillating parts of the resonance density was proposed and checked for the circular cavity. The present paper deals with numerous shapes which would be integrable (square, rectangle, and ellipse), pseudo-integrable (pentagon) and chaotic (stadium), if the cavities were closed (billiard case). A good agreement is found between the theoretical predictions, the numerical simulations, and experiments based on organic micro-lasers.Comment: 18 pages, 32 figure

    Grain growth: The key to understand solid-state dewetting of silver thin films

    Get PDF
    International audienceThe dynamics of solid-state dewetting of polycrystalline silver thin films in oxygen atmosphere was investigated with in situ and real-time environmental Scanning Electron Microscopy at high temperature combined with Atomic Force Microscopy. Three steps were identified during dewetting : induction, hole propagation without specific rim and sintering. Moreover, it was observed that a very selective grain growth, promoted by surface diffusion, plays a key role all along the process

    On the solid-state dewetting of polycrystalline thin films: Capillary versus grain growth approach

    No full text
    International audienceSolid-state dewetting of polycrystalline silver thin films was investigated with in situ and real time Environmental Scanning Electron Microscopy at High Temperature (HT-ESEM) in different annealing atmospheres: secondary vacuum or oxygen-rich (partial pressure ≥100 Pa) environment. A model where oxygen plays a key role is proposed to explain the very different observed morphologies; oxygen favours hole creation and isotropic hole propagation as well as grain selection. But, whatever the atmosphere, dewetting does not proceed through the propagation of a rim but instead involves the growth of specific grains and shrinkage of others. Models based on macroscopic curvature to account for the propagation speed of the dewetting front fail to fit the present observations. This points to a paramount role of the grain size and stability in the dewetting morphology
    corecore