484 research outputs found
The impact of parent-created motivational climate on adolescent athletes' perceptions of physical self-concept
This is a preliminary version of this article. The official published version can be obtained from the link below.Grounded in expectancy-value model (Eccles, 1993) and achievement goal theory (Nicholls, 1989), this study examined the perceived parental climate and its impact on athletes' perceptions of competence and ability. Hierarchical regression analyses with a sample of 237 British adolescent athletes revealed that mothers and fathers' task- and ego-involving climate predicted their son's physical self-concept; the father in particular is the strongest influence in shaping a son's physical self-concept positively and negatively. It was also found that the self-concept of the young adolescent athlete is more strongly affected by the perceived parental-created motivational climate (both task and ego) than the older adolescent athlete's self-concept. These findings support the expectancy-value model assumptions related to the role of parents as important socializing agents, the existence of gender-stereotyping, and the heavy reliance younger children place on parents' feedback
Spin filtering and magnetoresistance in ballistic tunnel junctions
We theoretically investigate magnetoresistance (MR) effects in connection
with spin filtering in quantum-coherent transport through tunnel junctions
based on non-magnetic/semimagnetic heterostructures. We find that spin
filtering in conjunction with the suppression/enhancement of the spin-dependent
Fermi seas in semimagnetic contacts gives rise to (i) spin-split kinks in the
MR of single barriers and (ii) a robust beating pattern in the MR of double
barriers with a semimagnetic well. We believe these are unique signatures for
quantum filtering.Comment: Added references + corrected typo
The JCMT Gould Belt survey: Dense core clusters in Orion B
The James Clerk Maxwell Telescope Gould Belt Legacy Survey obtained SCUBA-2 observations of dense cores within three sub-regions of OrionB: LDN1622, NGC2023/2024, and NGC2068/2071, all of which contain clusters of cores. We present an analysis of the clustering properties of these cores, including the two-point correlation function and Cartwright’s Q parameter. We identify individual clusters of dense cores across all three regions using a minimal spanning tree technique, and find that in each cluster, the most massive cores tend to be centrally located. We also apply the independent M–Σ technique and find a strong correlation between core mass and the local surface density of cores. These two lines of evidence jointly suggest that some amount of mass segregation in clusters has happened already at the dense core stage
Probing the Environment with Galaxy Dynamics
I present various projects to study the halo dynamics of elliptical galaxies.
This allows one to study the outer mass and orbital distributions of
ellipticals in different environments, and the inner distributions of groups
and clusters themselves.Comment: 5 pages, 2 figs, to appear in Proc. ESO Workshop, Groups of Galaxies
in the Nearby Universe (5-9 Dec 2005), eds. I. Saviane, V. Ivanov & J.
Borissova (Springer-Verlag
A rapid staining technique for the detection of the initiation of germination of bacterial spores
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75645/1/j.1472-765x.2002.01047.x.pd
Bounds on the dipole moments of the tau-neutrino via the process in a 331 model
We obtain limits on the anomalous magnetic and electric dipole moments of the
through the reaction
and in the framework of a 331 model. We consider initial-state radiation, and
neglect and photon exchange diagrams. The results are based on the data
reported by the L3 Collaboration at LEP, and compare favorably with the limits
obtained in other models, complementing previous studies on the dipole moments.Comment: 13 pages, 4 figures, to be published in The European Physical J C.
arXiv admin note: substantial text overlap with arXiv:hep-ph/060527
The decay Z -> neutrino antineutrino photon in the Standard Model
A complete study of the one-loop induced decay Z -> neutrino antineutrino
photon is presented within the framework of the Standard Model. The advantages
of using a nonlinear gauge are stressed. We have found that the main
contributions come from the electric dipole and the magnetic dipole transitions
of the Z gauge boson and the neutrino, respectively. We obtain a branching
ratio B=7.16E-10, which is about four orders of magnitude smaller than the
bound recentely obtained by the L3 collaboration and thus it leaves open a
window to search for new physics effects in single-photon decays of the Z
boson.Comment: REVTEX,15 pp, 5 eps figures, Approved for publication in Physical
Review
Exact results for hydrogen recombination on dust grain surfaces
The recombination of hydrogen in the interstellar medium, taking place on
surfaces of microscopic dust grains, is an essential process in the evolution
of chemical complexity in interstellar clouds. The H_2 formation process has
been studied theoretically, and in recent years also by laboratory experiments.
The experimental results were analyzed using a rate equation model. The
parameters of the surface, that are relevant to H_2 formation, were obtained
and used in order to calculate the recombination rate under interstellar
conditions. However, it turned out that due to the microscopic size of the dust
grains and the low density of H atoms, the rate equations may not always apply.
A master equation approach that provides a good description of the H_2
formation process was proposed. It takes into account both the discrete nature
of the H atoms and the fluctuations in the number of atoms on a grain. In this
paper we present a comprehensive analysis of the H_2 formation process, under
steady state conditions, using an exact solution of the master equation. This
solution provides an exact result for the hydrogen recombination rate and its
dependence on the flux, the surface temperature and the grain size. The results
are compared with those obtained from the rate equations. The relevant length
scales in the problem are identified and the parameter space is divided into
two domains. One domain, characterized by first order kinetics, exhibits high
efficiency of H_2 formation. In the other domain, characterized by second order
kinetics, the efficiency of H_2 formation is low. In each of these domains we
identify the range of parameters in which, the rate equations do not account
correctly for the recombination rate. and the master equation is needed.Comment: 23 pages + 8 figure
Weak capture of protons by protons
The cross section for the proton weak capture reaction
is calculated with wave functions obtained from a number of modern, realistic
high-precision interactions. To minimize the uncertainty in the axial two-body
current operator, its matrix element has been adjusted to reproduce the
measured Gamow-Teller matrix element of tritium decay in model
calculations using trinucleon wave functions from these interactions. A
thorough analysis of the ambiguities that this procedure introduces in
evaluating the two-body current contribution to the pp capture is given. Its
inherent model dependence is in fact found to be very weak. The overlap
integral for the pp capture is predicted to be in the range
7.05--7.06, including the axial two-body current contribution, for all
interactions considered.Comment: 17 pages RevTeX (twocolumn), 5 postscript figure
Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star
A search of the time-series photometry from NASA's Kepler spacecraft reveals
a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626
with a period of 290 days. The characteristics of the host star are well
constrained by high-resolution spectroscopy combined with an asteroseismic
analysis of the Kepler photometry, leading to an estimated mass and radius of
0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for
the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the
planet. The system passes a battery of tests for false positives, including
reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A
full BLENDER analysis provides further validation of the planet interpretation
by showing that contamination of the target by an eclipsing system would rarely
mimic the observed shape of the transits. The final validation of the planet is
provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year
span. Although the velocities do not lead to a reliable orbit and mass
determination, they are able to constrain the mass to a 3{\sigma} upper limit
of 124 MEarth, safely in the regime of planetary masses, thus earning the
designation Kepler-22b. The radiative equilibrium temperature is 262K for a
planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is
a rocky planet, it is the first confirmed planet with a measured radius to
orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap
- …