263 research outputs found

    Structure of HrcQ(B)-C, a conserved component of the bacterial type III secretion systems

    Get PDF
    Type III secretion systems enable plant and animal bacterial pathogens to deliver virulence proteins into the cytosol of eukaryotic host cells, causing a broad spectrum of diseases including bacteremia, septicemia, typhoid fever, and bubonic plague in mammals, and localized lesions, systemic wilting, and blights in plants. In addition, type III secretion systems are also required for biogenesis of the bacterial flagellum. The HrcQ(B) protein, a component of the secretion apparatus of Pseudomonas syringae with homologues in all type III systems, has a variable N-terminal and a conserved C-terminal domain (HrcQ(B)-C). Here, we report the crystal structure of HrcQ(B)-C and show that this domain retains the ability of the full-length protein to interact with other type III components. A 3D analysis of sequence conservation patterns reveals two clusters of residues potentially involved in protein–protein interactions. Based on the analogies between HrcQ(B) and its flagellum homologues, we propose that HrcQ(B)-C participates in the formation of a C-ring-like assembly

    Structural insights into Clostridium perfringens delta toxin pore formation

    Get PDF
    Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus β-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF) revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB) cytotoxicity from that of the staphylococcal pore-forming toxins

    The C-Terminal Domain of the Arabinosyltransferase Mycobacterium tuberculosis EmbC Is a Lectin-Like Carbohydrate Binding Module

    Get PDF
    The D-arabinan-containing polymers arabinogalactan (AG) and lipoarabinomannan (LAM) are essential components of the unique cell envelope of the pathogen Mycobacterium tuberculosis. Biosynthesis of AG and LAM involves a series of membrane-embedded arabinofuranosyl (Araf) transferases whose structures are largely uncharacterised, despite the fact that several of them are pharmacological targets of ethambutol, a frontline drug in tuberculosis therapy. Herein, we present the crystal structure of the C-terminal hydrophilic domain of the ethambutol-sensitive Araf transferase M. tuberculosis EmbC, which is essential for LAM synthesis. The structure of the C-terminal domain of EmbC (EmbCCT) encompasses two sub-domains of different folds, of which subdomain II shows distinct similarity to lectin-like carbohydrate-binding modules (CBM). Co-crystallisation with a cell wall-derived di-arabinoside acceptor analogue and structural comparison with ligand-bound CBMs suggest that EmbCCT contains two separate carbohydrate binding sites, associated with subdomains I and II, respectively. Single-residue substitution of conserved tryptophan residues (Trp868, Trp985) at these respective sites inhibited EmbC-catalysed extension of LAM. The same substitutions differentially abrogated binding of di- and penta-arabinofuranoside acceptor analogues to EmbCCT, linking the loss of activity to compromised acceptor substrate binding, indicating the presence of two separate carbohydrate binding sites, and demonstrating that subdomain II indeed functions as a carbohydrate-binding module. This work provides the first step towards unravelling the structure and function of a GT-C-type glycosyltransferase that is essential in M. tuberculosis. Author Summary Top Tuberculosis (TB), an infectious disease caused by the bacillus Mycobacterium tuberculosis, burdens large swaths of the world population. Treatment of active TB typically requires administration of an antibiotic cocktail over several months that includes the drug ethambutol. This front line compound inhibits a set of arabinosyltransferase enzymes, called EmbA, EmbB and EmbC, which are critical for the synthesis of arabinan, a vital polysaccharide in the pathogen's unique cell envelope. How precisely ethambutol inhibits arabinosyltransferase activity is not clear, in part because structural information of its pharmacological targets has been elusive. Here, we report the high-resolution structure of the C-terminal domain of the ethambutol-target EmbC, a 390-amino acid fragment responsible for acceptor substrate recognition. Combining the X-ray crystallographic analysis with structural comparisons, site-directed mutagenesis, activity and ligand binding assays, we identified two regions in the C-terminal domain of EmbC that are capable of binding acceptor substrate mimics and are critical for activity of the full-length enzyme. Our results begin to define structure-function relationships in a family of structurally uncharacterised membrane-embedded glycosyltransferases, which are an important target for tuberculosis therapy

    No association between fear of hypoglycemia and blood glucose variability in type 1 diabetes: The cross-sectional VARDIA study

    Get PDF
    AIMS: In type 1 diabetes (T1D), treatment efficacy is limited by the unpredictability of blood glucose results and glycemic variability (GV). Fear of Hypoglycemia (FOH) remains a major brake for insulin treatment optimization. We aimed to assess the association of GV with FOH in participants with T1D in an observational cross-sectional study performed in 9 French Diabetes Centres (NCT02790060). METHODS: Participants were T1D for ≥5 years, aged 18-75 years, on stable insulin therapy for ≥3 months. The coefficient of variation (CV) of blood glucose and mean amplitude of glycemic excursions (MAGE) were used to assess GV from 7-point self-monitoring of blood glucose (SMBG). FOH was assessed using the validated French version of the Hypoglycemia Fear Survey-II (HFS-II) questionnaire. RESULTS: Among a total of 570 recruited participants, 298 were suitable for analysis: 46% women, 58% on continuous subcutaneous insulin infusion [CSII], mean age 49 ± 16 years, HbA1c 7.5 ± 0.9%, HFS-II score 67 ± 18 and 12% with recent history of severe hypoglycemia during the previous 6 months, mean CV 39.8 ± 9.7% and MAGE 119 ± 42 mg/dL. CV and MAGE did not significantly correlate with HFS-II score (R = -0.05;P = 0.457 and R = 0.08;P = 0.170). Participants with severe hypoglycemia in the previous 6 months had higher HFS scores. Participants with higher HFS scores presented more hypoglycemias during follow-up. CONCLUSIONS: FOH as determined using the HFS-II questionnaire was not associated with 7-point SMBG variability in participants with T1D, but was associated with a positive history of severe hypoglycemia. Higher FOH was associated with higher frequency of hypoglycemia during follow-up

    The Structure of an RNAi Polymerase Links RNA Silencing and Transcription

    Get PDF
    RNA silencing refers to a group of RNA-induced gene-silencing mechanisms that developed early in the eukaryotic lineage, probably for defence against pathogens and regulation of gene expression. In plants, protozoa, fungi, and nematodes, but apparently not insects and vertebrates, it involves a cell-encoded RNA-dependent RNA polymerase (cRdRP) that produces double-stranded RNA triggers from aberrant single-stranded RNA. We report the 2.3-Å resolution crystal structure of QDE-1, a cRdRP from Neurospora crassa, and find that it forms a relatively compact dimeric molecule, each subunit of which comprises several domains with, at its core, a catalytic apparatus and protein fold strikingly similar to the catalytic core of the DNA-dependent RNA polymerases responsible for transcription. This evolutionary link between the two enzyme types suggests that aspects of RNA silencing in some organisms may recapitulate transcription/replication pathways functioning in the ancient RNA-based world

    Magnetoencephalography Study of Right Parietal Lobe Dysfunction of the Evoked Mirror Neuron System in Antipsychotic-Free Schizophrenia

    Get PDF
    INTRODUCTION: Patients with schizophrenia commonly exhibit deficits of non-verbal communication in social contexts, which may be related to cognitive dysfunction that impairs recognition of biological motion. Although perception of biological motion is known to be mediated by the mirror neuron system, there have been few empirical studies of this system in patients with schizophrenia. METHODS: Using magnetoencephalography, we examined whether antipsychotic-free schizophrenia patients displayed mirror neuron system dysfunction during observation of biological motion (jaw movement of another individual). RESULTS: Compared with normal controls, the patients with schizophrenia had fewer components of both the waveform and equivalent current dipole, suggesting aberrant brain activity resulting from dysfunction of the right inferior parietal cortex. They also lacked the changes of alpha band and gamma band oscillation seen in normal controls, and had weaker phase-locking factors and gamma-synchronization predominantly in right parietal cortex. CONCLUSIONS: Our findings demonstrate that untreated patients with schizophrenia exhibit aberrant mirror neuron system function based on the right inferior parietal cortex, which is characterized by dysfunction of gamma-synchronization in the right parietal lobe during observation of biological motion

    Molecular Evolution of the Neuropeptide S Receptor

    Get PDF
    The neuropeptide S receptor (NPSR) is a recently deorphanized member of the G protein-coupled receptor (GPCR) superfamily and is activated by the neuropeptide S (NPS). NPSR and NPS are widely expressed in central nervous system and are known to have crucial roles in asthma pathogenesis, locomotor activity, wakefulness, anxiety and food intake. The NPS-NPSR system was previously thought to have first evolved in the tetrapods. Here we examine the origin and the molecular evolution of the NPSR using in-silico comparative analyses and document the molecular basis of divergence of the NPSR from its closest vertebrate paralogs. In this study, NPSR-like sequences have been identified in a hemichordate and a cephalochordate, suggesting an earlier emergence of a NPSR-like sequence in the metazoan lineage. Phylogenetic analyses revealed that the NPSR is most closely related to the invertebrate cardioacceleratory peptide receptor (CCAPR) and the group of vasopressin-like receptors. Gene structure features were congruent with the phylogenetic clustering and supported the orthology of NPSR to the invertebrate NPSR-like and CCAPR. A site-specific analysis between the vertebrate NPSR and the well studied paralogous vasopressin-like receptor subtypes revealed several putative amino acid sites that may account for the observed functional divergence between them. The data can facilitate experimental studies aiming at deciphering the common features as well as those related to ligand binding and signal transduction processes specific to the NPSR
    corecore