53 research outputs found

    Vermischung in 3D sphärischen Konvektionsmodellen des Erdmantels

    Get PDF
    The existence of geochemically distinct reservoirs in the Earth's mantle is inferred from the observation of worldwide rather homogeneous mid-ocean ridge basalts (MORB) on the one side and heterogeneous ocean island basalts (OIB) on the other side. How can these observations be reconciled with geophysically favoured large-scale convection? ... is an unresolved problem of global geodynamics. In this thesis stirring properties of 3-D spherical models of convection in the Earth's mantle are investigated numerically. Attempts to make the models more earthlike are described. It is proposed as a working assumption for future, more detailed investigations that there may have been a change from small-scale to large-scale convection during the evolution of the mantle

    Towards A Unified Model For The Dynamics Of Planets

    Get PDF
    The way a planet deforms in response to thermal or gravitational driving forces, depends on the material properties of its constituents. The Earth's behaviour is unique in that its outermost layer consists of a small number of continuously moving plates. Venus, another planet of similar size and bulk composition to the Earth displays signs of active volcanism but there is no evidence of plate movements or plate tectonics. In this article we review Eulerian finite element (FE) schemes and a particle-in-cell (PIC) FE scheme.1 Focussing initially on models of crustal deformation at a scale of a few tens of km, we choose a Mohr-Coulomb yield criterion based upon the idea that frictional slip occurs on whichever one of many randomly oriented planes happens to be favorably oriented with respect to the stress field. As coupled crust/mantle models become more sophisticated it is important to be able to use whichever failure model is appropriate to a given part of the system. We have therefore developed a way to represent Mohr-Coulomb failure within a mantle-convection fluid dynamics code. With the modelling of lithosphere deformation we use an orthotropic viscous rheology (a different viscosity for pure shear to that for simple shear) to define a preferred plane for slip to occur given the local stress eld. The simple-shear viscosity and the deformation can then be iterated to ensure that the yield criterion is always satisfied. We again assume the Boussinesq approximation -neglecting any effect of dilatancy on the stress field. Turning to the largest planetary scale, we present an outline of the mechanics of unified models plate-mantle models and then show how computational solutions can be obtained for such models using Escript. The consequent results for different types of convection are presented and the stability of the observed flow patterns with respect to different initial conditions and computational resolutions is discussed

    The influence of anisotropy and yielding on simple computational models of lithosphere scale shear banding and mantle convection

    Get PDF

    Emissions of sulphur dioxide (SO2) from coal-fired power plants in Serbia and Bosnia-Herzegovina: First attempts of a validation of TROPOMI satellite products with airborne in situ measurements

    Get PDF
    The Western Balkan region is known for emitting alarmingly high sulphur dioxide amounts from coal-fired power plants. Though a number of environmental regulations have been introduced in recent years (e.g. desulphurisation installations, construction of modern power plants), the pollution burden is still much higher than recommended by the authorities. A number of different montoring systems are required to observe the growing pollution situation in the Western Balkan region, partly caused by a high energy demand from outside (e.g. Western Europe)

    ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP

    Get PDF
    A community diagnostics and performance metrics tool for the evaluation of Earth system models (ESMs) has been developed that allows for routine comparison of single or multiple models, either against predecessor versions or against observations. The priority of the effort so far has been to target specific scientific themes focusing on selected essential climate variables (ECVs), a range of known systematic biases common to ESMs, such as coupled tropical climate variability, monsoons, Southern Ocean processes, continental dry biases, and soil hydrology–climate interactions, as well as atmospheric CO2 budgets, tropospheric and stratospheric ozone, and tropospheric aerosols. The tool is being developed in such a way that additional analyses can easily be added. A set of standard namelists for each scientific topic reproduces specific sets of diagnostics or performance metrics that have demonstrated their importance in ESM evaluation in the peer-reviewed literature. The Earth System Model Evaluation Tool (ESMValTool) is a community effort open to both users and developers encouraging open exchange of diagnostic source code and evaluation results from the Coupled Model Intercomparison Project (CMIP) ensemble. This will facilitate and improve ESM evaluation beyond the state-of-the-art and aims at supporting such activities within CMIP and at individual modelling centres. Ultimately, we envisage running the ESMValTool alongside the Earth System Grid Federation (ESGF) as part of a more routine evaluation of CMIP model simulations while utilizing observations available in standard formats (obs4MIPs) or provided by the user
    • …
    corecore