703 research outputs found

    Altered Negative Unconscious Processing in Major Depressive Disorder: An Exploratory Neuropsychological Study

    Get PDF
    Major depressive disorder (MDD) has been characterized by abnormalities in emotional processing. However, what remains unclear is whether MDD also shows deficits in the unconscious processing of either positive or negative emotions. We conducted a psychological study in healthy and MDD subjects to investigate unconscious emotion processing and its valence-specific alterations in MDD patients.We combined a well established paradigm for unconscious visual processing, the continuous flash suppression, with positive and negative emotional valences to detect the attentional preference evoked by the invisible emotional facial expressions.Healthy subjects showed an attentional bias for negative emotions in the unconscious condition while this valence bias remained absent in MDD patients. In contrast, this attentional bias diminished in the conscious condition for both healthy subjects and MDD.Our findings demonstrate for the first time valence-specific deficits specifically in the unconscious processing of emotions in MDD; this may have major implications for subsequent neurobiological investigations as well as for clinical diagnosis and therapy

    Loneliness and the Emotional Experience of Absence

    Get PDF
    In this paper, we develop an analysis of the structure and content of loneliness. We argue that this is an emotion of absence-an affective state in which certain social goods are regarded as out of reach for the subject of experience. By surveying the range of social goods that appear to be missing from the lonely person's perspective, we see what it is that can make this emotional condition so subjectively awful for those who undergo it, including the profound sense of being unable to realise oneself, in collaboration with others

    Possible adverse events in children treated by manual therapy: a review

    Get PDF
    BACKGROUND: Pediatric manual therapy is controversial within the medical community particularly with respect to adverse events. Pediatric manual therapy (Ped MT) is commonly used by a number of professions such as chiropractors, osteopaths and naturopaths for a variety of treatments in children. Ped MT interventions range from advice, light touch, massage, through to mobilisation and high velocity spinal manipulation. However, current evidence related to adverse events associated with Ped MT is not well understood. OBJECTIVE: To update the clinical research literature from the 2007 report by Vohra, Johnston, Cramer and Humphreys on possible adverse events in children treated by spinal manipulation. METHODS: A review of the clinical research literature from June 2004 until January 2010 as reported in MEDLINE, PubMed and PubMed Central for adverse events specifically related to the treatment of pediatric cases by manual therapy. RESULTS: Only three new clinical studies, one systematic review with meta-analysis and one evidence report were identified. Two clinical studies reported on chiropractic care and one on osteopathic spinal manipulation in children. The systematic review investigated all studies of adverse events and manual therapy and was not specific for pediatric patients. The evidence review focused on effectiveness of spinal manipulation in a variety of musculoskeletal conditions. No serious or catastrophic adverse events were reported in the clinical studies or systematic review. However for adults, it has been estimated that between 0.003% and 0.13% of manual therapy treatments may result in a serious adverse event. Although mild to moderate adverse events are common in adults, an accurate estimate from high quality pediatric studies is currently not available. CONCLUSIONS: There is currently insufficient research evidence related to adverse events and manual therapy. However, clinical studies and systematic reviews from adult patients undergoing manual therapy, particularly spinal manipulation report that mild to moderate adverse events are common and self limiting. However serious adverse events are rare and much less than for medication commonly prescribed for these problems. More high quality research specifically addressing adverse events and pediatric manual therapy is needed

    The human connectome project for disordered emotional states: Protocol and rationale for a research domain criteria study of brain connectivity in young adult anxiety and depression

    Get PDF
    Available online 5 March 2020.Through the Human Connectome Project (HCP) our understanding of the functional connectome of the healthy brain has been dramatically accelerated. Given the pressing public health need, we must increase our understanding of how connectome dysfunctions give rise to disordered mental states. Mental disorders arising from high levels of negative emotion or from the loss of positive emotional experience affect over 400 million people globally. Such states of disordered emotion cut across multiple diagnostic categories of mood and anxiety disorders and are compounded by accompanying disruptions in cognitive function. Not surprisingly, these forms of psychopathology are the leading cause of disability worldwide. The Research Domain Criteria (RDoC) initiative spearheaded by NIMH offers a framework for characterizing the relations among connectome dysfunctions, anchored in neural circuits and phenotypic profiles of behavior and self-reported symptoms. Here, we report on our Connectomes Related to Human Disease protocol for integrating an RDoC framework with HCP protocols to characterize connectome dysfunctions in disordered emotional states, and present quality control data from a representative sample of participants. We focus on three RDoC domains and constructs most relevant to depression and anxiety: 1) loss and acute threat within the Negative Valence System (NVS) domain; 2) reward valuation and responsiveness within the Positive Valence System (PVS) domain; and 3) working memory and cognitive control within the Cognitive System (CS) domain. For 29 healthy controls, we present preliminary imaging data: functional magnetic resonance imaging collected in the resting state and in tasks matching our constructs of interest (“Emotion”, “Gambling” and “Continuous Performance” tasks), as well as diffusion-weighted imaging. All functional scans demonstrated good signal-to-noise ratio. Established neural networks were robustly identified in the resting state condition by independent component analysis. Processing of negative emotional faces significantly activated the bilateral dorsolateral prefrontal and occipital cortices, fusiform gyrus and amygdalae. Reward elicited a response in the bilateral dorsolateral prefrontal, parietal and occipital cortices, and in the striatum. Working memory was associated with activation in the dorsolateral prefrontal, parietal, motor, temporal and insular cortices, in the striatum and cerebellum. Diffusion tractography showed consistent profiles of fractional anisotropy along known white matter tracts. We also show that results are comparable to those in a matched sample from the HCP Healthy Young Adult data release. These preliminary data provide the foundation for acquisition of 250 subjects who are experiencing disordered emotional states. When complete, these data will be used to develop a neurobiological model that maps connectome dysfunctions to specific behaviors and symptoms.This work was supported by the National Institutes of Health [grant number U01MH109985 under PAR-14-281]

    Inter-hemispheric EEG coherence analysis in Parkinson's disease : Assessing brain activity during emotion processing

    Get PDF
    Parkinson’s disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3–AF4, F7–F8, F3–F4, FC5–FC6, T7–T8, P7–P8, and O1–O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities

    Mast cells as a unique hematopoietic lineage and cell system:From Paul Ehrlich's visions to precision medicine concepts

    Get PDF
    The origin and functions of mast cells (MCs) have been debated since their description by Paul Ehrlich in 1879. MCs have long been considered 'reactive bystanders' and 'amplifiers' in inflammatory processes, allergic reactions, and host responses to infectious diseases. However, knowledge about the origin, phenotypes and functions of MCs has increased substantially over the past 50 years. MCs are now known to be derived from multipotent hematopoietic progenitors, which, through a process of differentiation and maturation, form a unique hematopoietic lineage residing in multiple organs. In particular, MCs are distinguishable from basophils and other hematopoietic cells by their unique phenotype, origin(s), and spectrum of functions, both in innate and adaptive immune responses and in other settings. The concept of a unique MC lineage is further supported by the development of a distinct group of neoplasms, collectively referred to as mastocytosis, in which MC precursors expand as clonal cells. The clinical consequences of the expansion and/or activation of MCs are best established in mastocytosis and in allergic inflammation. However, MCs have also been implicated as important participants in a number of additional pathologic conditions and physiological processes. In this article, we review concepts regarding MC development, factors controlling MC expansion and activation, and some of the fundamental roles MCs may play in both health and disease. We also discuss new concepts for suppressing MC expansion and/or activation using molecularly-targeted drugs
    corecore