73 research outputs found
Trophic niche partitioning of five skate species of genus Bathyraja in northern and central Patagonia, Argentina
Overexploitation of marine communities can lead to modifications in the structure of the food web and can force organisms like elasmobranchs to change their feeding habits. To evaluate the impact that fisheries have on food webs and on the interactions between species, it is necessary to describe and quantify the diet of the species involved and follow it through time. This study compares the diet of five skate species using the data obtained from the by-catch of the Argentine hake (Merluccius hubbsi) fishery in north and central Patagonia, Argentina. Diet composition was assessed by analysing the digestive tract contents and trophic overlapping between species of the genus Bathyraja: Bathyraja albomaculata, Bathyraja brachyurops, Bathyraja macloviana, Bathyraja magellanica and Bathyraja multispinis. A total of 184 stomachs were analysed. The diets of B. albomaculata and B. macloviana mainly comprised annelids, whereas that of B. brachyurops primarily comprised fish, including hake heads discarded by the fishery. The diets of B. magellanica and B. multispinis were largely based on crustaceans. Despite the morphological similarities and their shared preference for benthic habitats, no complete diet overlaps were found between the different species. These results suggest that these skate species have undergone a process of diet specialisation. This is a common feeding strategy that occurs to successfully eliminate competition when resources are limited, which corresponds to the conditions found in an environment being affected by the pressures of overfishing.Fil: Tschopp, Ayelen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Cristiani, Franco. Universidad Nacional de la Patagonia "San Juan Bosco". Facultad de Ciencias Naturales y Ciencias de la Salud - Sede Puerto Madryn. Departamento de Biología y Ambiente; ArgentinaFil: Garcia, Nestor Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Crespo, Enrique Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco". Facultad de Ciencias Naturales y Ciencias de la Salud - Sede Puerto Madryn. Departamento de Biología y Ambiente; ArgentinaFil: Coscarella, Mariano Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco". Facultad de Ciencias Naturales y Ciencias de la Salud - Sede Puerto Madryn. Departamento de Biología y Ambiente; Argentin
Benefits of protected areas for nonbreeding waterbirds adjusting their distributions under climate warming
Climate warming is driving changes in species distributions and community composition. Many species have a so-called climatic debt, that is, shifts in range lag behind shifts in temperature isoclines. Inside protected areas (PAs), community changes in response to climate warming can be facilitated by greater colonization rates by warm-dwelling species, but also mitigated by lowering extirpation rates of cold-dwelling species. An evaluation of the relative importance of colonization-extirpation processes is important to inform conservation strategies that aim for both climate debt reduction and species conservation. We assessed the colonization-extirpation dynamics involved in community changes in response to climate inside and outside PAs. To do so, we used 25 years of occurrence data of nonbreeding waterbirds in the western Palearctic (97 species, 7071 sites, 39 countries, 1993-2017). We used a community temperature index (CTI) framework based on species thermal affinities to investigate species turnover induced by temperature increase. We determined whether thermal community adjustment was associated with colonization by warm-dwelling species or extirpation of cold-dwelling species by modeling change in standard deviation of the CTI (CTISD). Using linear mixed-effects models, we investigated whether communities in PAs had lower climatic debt and different patterns of community change than communities outside PAs. For CTI and CTISD combined, communities inside PAs had more species, higher colonization, lower extirpation, and lower climatic debt (16%) than communities outside PAs. Thus, our results suggest that PAs facilitate 2 independent processes that shape community dynamics and maintain biodiversity. The community adjustment was, however, not sufficiently fast to keep pace with the large temperature increases in the central and northeastern western Palearctic. Our results underline the potential of combining CTI and CTISD metrics to improve understanding of the colonization-extirpation patterns driven by climate warming.Peer reviewe
Benefits of protected areas for nonbreeding waterbirds adjusting their distributions under climate warming
Climate warming is driving changes in species distributions and community composition. Many species have a so-called climatic debt, that is, shifts in range lag behind shifts in temperature isoclines. Inside protected areas (PAs), community changes in response to climate warming can be facilitated by greater colonization rates by warm-dwelling species, but also mitigated by lowering extirpation rates of cold-dwelling species. An evaluation of the relative importance of colonization-extirpation processes is important to inform conservation strategies that aim for both climate debt reduction and species conservation. We assessed the colonization-extirpation dynamics involved in community changes in response to climate inside and outside PAs. To do so, we used 25 years of occurrence data of nonbreeding waterbirds in the western Palearctic (97 species, 7071 sites, 39 countries, 1993-2017). We used a community temperature index (CTI) framework based on species thermal affinities to investigate species turnover induced by temperature increase. We determined whether thermal community adjustment was associated with colonization by warm-dwelling species or extirpation of cold-dwelling species by modeling change in standard deviation of the CTI (CTISD). Using linear mixed-effects models, we investigated whether communities in PAs had lower climatic debt and different patterns of community change than communities outside PAs. For CTI and CTISD combined, communities inside PAs had more species, higher colonization, lower extirpation, and lower climatic debt (16%) than communities outside PAs. Thus, our results suggest that PAs facilitate 2 independent processes that shape community dynamics and maintain biodiversity. The community adjustment was, however, not sufficiently fast to keep pace with the large temperature increases in the central and northeastern western Palearctic. Our results underline the potential of combining CTI and CTISD metrics to improve understanding of the colonization-extirpation patterns driven by climate warming
Sexual dimorphism in Patagonotothen sima (Richardson, 1844)
In Argentina, the Nototheniidae is represented by about 20 species, which mostly live in coastal waters of the continental shelf and slope. A few species inhabit inshore waters along the coasts of Patagonia and the Fueguian and Falkland (Malvinas) archipelagos and even reach rocky intertidal zones (Norman 1937, Hart 1946). Patagonotothen sima (Richardson 1844) is distributed in the Atlantic from the San Matías Gulf (around 42°S) to the Beagle Channel (54°50'S), inhabiting shallow waters including the intertidal zones. During faunal surveys in the rocky intertidal zone in Puerto Deseado, Santa Cruz (by A. Gosztonyi), it was noted that males of P. sima, one of the most common fish species in that habitat, appeared to have a higher second dorsal fin than the females.Peer Reviewe
Redescription of Diplomystes mesembrinus (Siluriformes, Diplomystidae)
Volume: 105Start Page: 901End Page: 91
The ultrastructure of spermiogenesis and spermatozoa in Diplomystes mesembrinus
Spermiogenesis in Diplomystes mesembrinus, one of the most primitive species from the Siluriformes, occurs in cysts. Differentiation of spermatids is characterized by chromatin compaction, flagellum development, nuclear fossa formation, rotation of the nucleus, and excess cytoplasm elimination. The spermatozoon head is round, the nucleus contains highly condensed chromatin clusters, the midpiece is short, the axoneme shows a 9 + 2 pattern with two discrete lateral projections, and the acrosome is absent. The nuclear fossa penetrates deeply into the nucleus, including the centriolar complex and the start of the axoneme. The single large C-shaped mitochondrion sur rounds the: initial segment of the axoneme. The structural features of D. mesembrinus spermatozoon are similar to the Clupeiformes. (C) 2001 the Fisheries Society of the British Isles
- …