6 research outputs found

    Long-term halocarbon observations from a coastal and an inland site in Sabah, Malaysian Borneo

    Get PDF
    Abstract. Short-lived halocarbons are believed to have important sources in the tropics, where rapid vertical transport could provide a significant source to the stratosphere. In this study, quasi-continuous measurements of short-lived halocarbons are reported for two tropical sites in Sabah (Malaysian Borneo), one coastal and one inland (rainforest). We present the observations for C2Cl4, CHBr3, CH2Br2* (actually ~80% CH2Br2 and ~20% CHBrCl2) and CH3I from November 2008 to January 2010 made using our μDirac gas chromatographs with electron capture detection (GC-ECD). We focus on the first 15 months of observations, showing over one annual cycle for each compound and therefore adding significantly to the few limited-duration observational studies that have been conducted thus far in southeast Asia. The main feature in the C2Cl4 behaviour at both sites is its annual cycle, with the winter months being influenced by northerly flow with higher concentrations, typical of the Northern Hemisphere, and with the summer months influenced by southerly flow and lower concentrations representative of the Southern Hemisphere. No such clear annual cycle is seen for CHBr3, CH2Br2* or CH3I. The baseline values for CHBr3 and CH2Br2* are similar at the coastal (overall median: CHBr3 1.7 ppt, CH2Br2* 1.4 ppt) and inland sites (CHBr3 1.6 ppt, CH2Br2* 1.1 ppt), but periods with elevated values are seen at the coast (overall 95th percentile: CHBr3 4.4 ppt, CH2Br2ast 1.9 ppt), presumably resulting from the stronger influence of coastal emissions. Overall median bromine values from [CHBr3 × 3] + [CH2Br2* × 2] are 8.0 ppt at the coast and 6.8 ppt inland. The median values reported here are largely consistent with other limited tropical data and imply that southeast Asia generally is not, as has been suggested, a hot spot for emissions of these compounds. These baseline values are consistent with the most recent emissions found for southeast Asia using the p-TOMCAT (Toulouse Off-line Model of Chemistry And Transport) model. CH3I, which is only observed at the coastal site, is the shortest-lived compound measured in this study, and the observed atmospheric variations reflect this, with high variability throughout the study period. This work was supported by a NERC consortium grant to the OP3 team, by NCAS, by the European Commission through the SCOUT-O3 project (505390-GOCE-CF2004) and by NERC western Pacific grant number NE/F020341/1 and NERC CAST grant number NE/J006246/1. L. M. O’Brien and M. J. Ashfold thank NERC for research studentships. A. D. Robinson acknowledges NERC for their support through small grant project NE/D008085/1. N. R. P. Harris is supported by a NERC Advanced Research Fellowship. We thank the Sabah Foundation, Danum Valley Field Centre and the Royal Society (Glen Reynolds) for field site support. The research leading to these results has received funding from the European Union’s Seventh Framework Programme FP7/2007–2013 under grant agreement no. 226224 – SHIVA. We thank David Oram and Stephen Humphrey at UEA for their assistance in checking the calibration of our Aculife cylinder in May 2009. This is paper number 626 of the Royal Society’s South East Asian Rainforest Research Programme.This is the final published version. It first appeared at http://www.atmos-chem-phys.net/14/8369/2014/acp-14-8369-2014.html

    The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

    Full text link

    Bromocarbons in the tropical marine boundary layer at the Cape Verde Observatory – measurements and modelling

    No full text
    A new gas chromatograph was used to make measurements of halocarbons at the Cape Verde observatory during late May and early June 2007. The instrument demonstrated its potential for long-term autonomous measurements. Bromoform (CHBr<sub>3</sub>) exhibits the most variability of all the halocarbons observed, ranging from a background concentration of about 4 ppt to a maximum of >40 ppt during the course of the measurement period. CH<sub>2</sub>Br<sub>2</sub> correlates well with bromoform, suggesting a common regional source. Methyl iodide does not correlate with these bromocarbons, with base levels of around 1–2 ppt and some periods of much higher mixing ratios. Using published bromocarbon emission rates, our chemical transport model studies, presented here, do not reproduce the observations. Local emission magnitudes and CHBr<sub>3</sub>:CH<sub>2</sub>Br<sub>2</sub> ratios must be increased more in line with the recent observations of Yokouchi et al. (2005) to improve the model to measurement comparison. Even when the model reproduces the observed bromocarbons, modelled BrO is much less than recent tropical observations (Read et al., 2008). A sea salt source seems the likely explanation. When high BrO is reproduced, the model agrees much better with the observed ozone changes, including diurnal variation, during the measurement period but it is suggested that a representation of iodine chemistry in the model is also required

    The impact of local surface changes in Borneo on atmospheric composition at wider spatial scales: coastal processes, land-use change and air quality

    Get PDF
    We present results fromtheOP3 campaign in Sabah during 2008 that allowus to study the impact of local emission changes over Borneo on atmospheric composition at the regional andwider scale. OP3 constituent data provide an important constraint onmodel performance.Treatment of boundary layer processes is highlighted as an important area of model uncertainty.Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South EastAsia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NOx emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere

    The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

    Get PDF
    SSCI-VIDE+ATARI:CARE+BNO:BDAInternational audienc
    corecore