197 research outputs found

    The genetics of asthma and the promise of genomics-guided drug target discovery

    Get PDF
    Asthma is an inflammatory airway disease that is estimated to affect 339 million people globally. The symptoms of about 5-10% of patients with asthma are not adequately controlled with current therapy, and little success has been achieved in developing drugs that target the underlying mechanisms of asthma rather than suppressing symptoms. Over the past 3 years, well powered genetic studies of asthma have increased the number of independent asthma-associated genetic loci to 128. In this Series paper, we describe the immense progress in asthma genetics over the past 13 years and link asthma genetic variants to possible drug targets. Further studies are needed to establish the functional significance of gene variants associated with asthma in subgroups of patients and to describe the biological networks within which they function. The genomics-guided discovery of plausible drug targets for asthma could pave the way for the repurposing of existing drugs for asthma and the development of new treatments

    Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation

    Get PDF
    BACKGROUND: Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. RESULTS: Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by macrophages. CONCLUSION: Primary particle size, gold concentration and particle purity are important features to check, since these characteristics may deviate from the manufacturer's description. Suspensions of well dispersed 50 nm and 250 nm particles as well as their agglomerates produced very mild pulmonary inflammation at the same mass based dose. We conclude that single 50 nm gold particles do not pose a greater acute hazard than their agglomerates or slightly larger gold particles when using pulmonary inflammation as a marker for toxicity

    The CAST study protocol:A cluster randomized trial assessing the effect of circumferential casting versus plaster splinting on fracture redisplacement in reduced distal radius fractures in adults

    Get PDF
    Background There is no consensus concerning the optimal casting technique for displaced distal radius fractures (DRFs) following closed reduction. This study evaluates whether a splint or a circumferential cast is most optimal to prevent fracture redisplacement in adult patients with a reduced DRF. Additionally, the cost-effectiveness of both cast types will be calculated. Methods/design This multicenter cluster randomized controlled trial will compare initial immobilization with a circumferential below-elbow cast versus a below-elbow plaster splint in reduced DRFs. Randomization will take place on hospital-level (cluster, n = 10) with a cross-over point halfway the inclusion of the needed number of patients per hospital. Inclusion criteria comprise adult patients (≥ 18 years) with a primary displaced DRF which is treated conservatively after closed reduction. Multiple trauma patients (Injury Severity Score ≥ 16), concomitant ulnar fractures (except styloid process fractures) and patients with concomitant injury on the ipsilateral arm or inability to complete study forms will be excluded. Primary study outcome is fracture redisplacement of the initial reduced DRF. Secondary outcomes are patient-reported outcomes assessed with the Disability Arm Shoulder Hand score (DASH) and Patient-Rated Wrist Evaluation score (PRWE), comfort of the cast, quality of life assessed with the EQ-5D-5L questionnaire, analgesics use, cost-effectiveness and (serious) adverse events occurence. In total, 560 patients will be included and followed for 1 year. The estimated time required for inclusion will be 18 months. Discussion The CAST study will provide evidence whether the type of cast immobilization is of influence on fracture redisplacement in distal radius fractures. Extensive follow-up during one year concerning radiographic, functional and patient reported outcomes will give a broad view on DRF recovery. Trial registration Registered in the Dutch Trial Registry on January 14th 2020. Registration number: NL8311

    Aberrant DNA methylation and expression of SPDEF and FOXA2 in airway epithelium of patients with COPD

    Get PDF
    Background: Goblet cell metaplasia, a common feature of chronic obstructive pulmonary disease (COPD), is associated with mucus hypersecretion which contributes to the morbidity and mortality among patients. Transcription factors SAM-pointed domain-containing Ets-like factor (SPDEF) and forkhead box protein A2 (FOXA2) regulate goblet cell differentiation. This study aimed to (1) investigate DNA methylation and expression of SPDEF and FOXA2 during goblet cell differentiation and (2) compare this in airway epithelial cells from patients with COPD and controls during mucociliary differentiation. Methods: To assess DNA methylation and expression of SPDEF and FOXA2 during goblet cell differentiation, primary airway epithelial cells, isolated from trachea (non-COPD controls) and bronchial tissue (patients with COPD), were differentiated by culture at the air-liquid interface (ALI) in the presence of cytokine interleukin (IL)-13 to promote goblet cell differentiation. Results: We found that SPDEF expression was induced during goblet cell differentiation, while FOXA2 expression was decreased. Importantly, CpG number 8 in the SPDEF promoter was hypermethylated upon differentiation, whereas DNA methylation of FOXA2 promoter was not changed. In the absence of IL-13, COPD-derived ALI-cultured cells displayed higher SPDEF expression than control-derived ALI cultures, whereas no difference was found for FOXA2 expression. This was accompanied with hypomethylation of CpG number 6 in the SPDEF promoter and also hypomethylation of CpG numbers 10 and 11 in the FOXA2 promoter. Conclusions: These findings suggest that aberrant DNA methylation of SPDEF and FOXA2 is one of the factors underlying mucus hypersecretion in COPD, opening new avenues for epigenetic-based inhibition of mucus hypersecretion

    Mapping Arginase Expression with <sup>18</sup>F-Fluorinated Late-Generation Arginase Inhibitors Derived from Quaternary α-Amino Acids

    Get PDF
    Arginase hydrolyzes L-arginine and influences levels of polyamines and nitric oxide. Arginase overexpression is associated with inflammation and tumorigenesis. Thus, radiolabeled arginase inhibitors may be suitable PET tracers for staging arginase-related pathophysiologies. We report the synthesis and evaluation of 2 radiolabeled arginase inhibitors, 18F-FMARS and 18F-FBMARS, developed from α-substituted-2-amino-6-boronohexanoic acid derivatives. Methods: Arylboronic ester-derived precursors were radiolabeled via copper-mediated fluorodeboronation. Binding assays using arginase-expressing PC3 and LNCaP cells were performed. Autoradiography of lung sections from a guinea pig model of asthma overexpressing arginase and dynamic small-animal PET imaging with PC3-xenografted mice evaluated the radiotracers' specific binding and pharmacokinetics. Results:18F-fluorinated compounds were obtained with radiochemical yields of up to 5% (decay-corrected) and an average molar activity of 53 GBq⋅μmol-1 Cell and lung section experiments indicated specific binding that was blocked up to 75% after pretreatment with arginase inhibitors. Small-animal PET studies indicated fast clearance of the radiotracers (7.3 ± 0.6 min), arginase-mediated uptake, and a selective tumor accumulation (SUV, 3.0 ± 0.7). Conclusion: The new 18F-fluorinated arginase inhibitors have the potential to map increased arginase expression related to inflammatory and tumorigenic processes. 18F-FBMARS showed the highest arginase-mediated uptake in PET imaging and a significant difference between uptake in control and arginase-inhibited PC3 xenografted mice. These results encourage further research to examine the suitability of 18F-FBMARS for selecting patients for treatments with arginase inhibitors

    The Harris hip score: Do ceiling effects limit its usefulness in orthopedics?: A systematic review

    Get PDF
    The Harris hip score (HHS), a disease-specific health status scale that is frequently used to measure the outcome of total hip arthroplasty, has never been validated properly. A questionnaire is suitable only when all 5 psychometric properties are of sufficient quality. We questioned the usefulness of the HHS by investigating its content validity. We performed a systematic review based on a literature search in PubMed, Embase, and the Cochrane Library for descriptive studies published in 2007. 54 studies (59 patient groups) met our criteria and were included in the data analysis. To determine the content validity, we calculated the ceiling effect (percentage) for each separate study and we pooled data to measure the weighted mean. A subanalysis of indications for THA was performed to differentiate the populations for which the HHS would be suitable and for which it would not. A ceiling effect of 15% or less was considered to be acceptable. Over half the studies (31/59) revealed unacceptable ceiling effects. Pooled data across the studies included (n = 6,667 patients) suggested ceiling effects of 20% (95%CI: 18-22). Ceiling effects were greater (32%, 95%CI:12-52) in those patients undergoing hip resurfacing arthroplasty. Although the Harris hip score is widely used in arthroplasty research on outcomes, ceiling effects are common and these severely limit its validity in this field of researc

    Cigarette smoke and lipopolysaccharide induce a proliferative airway smooth muscle phenotype

    Get PDF
    Background: A major feature of chronic obstructive pulmonary disease (COPD) is airway remodelling, which includes an increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodelling in COPD are currently unknown. We hypothesized that cigarette smoke (CS) and/or lipopolysaccharide (LPS), a major constituent of CS, organic dust and gram-negative bacteria, that may be involved in recurrent airway infections and exacerbations in COPD patients, would induce phenotype changes of ASM. Methods: To this aim, using cultured bovine tracheal smooth muscle (BTSM) cells and tissue, we investigated the direct effects of CS extract (CSE) and LPS on ASM proliferation and contractility. Results: Both CSE and LPS induced a profound and concentration-dependent increase in DNA synthesis in BTSM cells. CSE and LPS also induced a significant increase in BTSM cell number, which was associated with increased cyclin D1 expression and dependent on activation of ERK 1/2 and p38 MAP kinase. Consistent with a shift to a more proliferative phenotype, prolonged treatment of BTSM strips with CSE or LPS significantly decreased maximal methacholine- and KCl-induced contraction. Conclusions: Direct exposure of ASM to CSE or LPS causes the induction of a proliferative, hypocontractile ASM phenotype, which may be involved in airway remodelling in COPD

    Reduced Vitamin K Status as a Potentially Modifiable Risk Factor of Severe Coronavirus Disease 2019

    Get PDF
    BACKGROUND: Respiratory failure and thromboembolism are frequent in SARS-CoV-2-infected patients. Vitamin K activates both hepatic coagulation factors and extrahepatic endothelial anticoagulant protein S, required for thrombosis prevention. In times of vitamin K insufficiency, hepatic procoagulant factors are preferentially activated over extrahepatic proteins. Vitamin K also activates matrix Gla protein (MGP), which protects against pulmonary and vascular elastic fiber damage. We hypothesized that vitamin K may be implicated in coronavirus disease 2019 (COVID-19), linking pulmonary and thromboembolic disease. METHODS: 135 hospitalized COVID-19 patients were compared with 184 historical controls. Poor outcome was defined as invasive ventilation and/or death. Inactive vitamin K-dependent MGP (dp-ucMGP) and prothrombin (PIVKA-II) were measured, inversely related to extrahepatic and hepatic vitamin K status, respectively. Desmosine was measured to quantify the rate of elastic fiber degradation. Arterial calcification severity was assessed by computed tomography. RESULTS: Dp-ucMGP was elevated in COVID-19 patients compared to controls (p<0.001), with even higher dp-ucMGP in patients with poor outcomes (p<0.001). PIVKA-II was normal in 82.1% of patients. Dp-ucMGP was correlated with desmosine (p<0.001), and coronary artery (p=0.002) and thoracic aortic (p<0.001) calcification scores. CONCLUSIONS: Dp-ucMGP was severely increased in COVID-19 patients, indicating extrahepatic vitamin K insufficiency, which was related to poor outcome while hepatic procoagulant factor II remained unaffected. These data suggest a mechanism of pneumonia-induced extrahepatic vitamin K depletion leading to accelerated elastic fiber damage and thrombosis in severe COVID-19 due to impaired activation of MGP and endothelial protein S, respectively. A clinical trial could assess whether vitamin K administration improves COVID-19 outcomes
    corecore