177 research outputs found

    NADPH Oxidase–Dependent Superoxide Production Is Associated With Carotid Intima-Media Thickness in Subjects Free of Clinical Atherosclerotic Disease

    Get PDF
    Objective—Oxidative stress plays a critical role in the pathogenesis of atherosclerosis. The NADPH oxidase constitutes the main source of superoxide in phagocytic and vascular cells. This study aimed to investigate the levels of NADPH oxidase–mediated superoxide production in phagocytic cells and the association between phagocytic superoxide production and carotid intima-media thickness (IMT), a surrogate marker of asymptomatic atherosclerosis. Methods and Results—NADPH oxidase–mediated superoxide production was determined by a chemiluminescence assay using lucigenin and associated with IMT for 184 asymptomatic subjects free of overt clinical atherosclerotic disease. Compared with individuals in the lowest tertile of superoxide production, those in the upper tertile ( 20 counts/sec) showed significantly higher IMT (P 0.05). In correlation analysis, a positive relationship was found between superoxide production and carotid IMT. Superoxide production also correlated positively (P 0.05) with body mass index (BMI). In multivariate analysis, the association of superoxide production with carotid IMT remained significant after adjustment for age, sex, systolic blood pressure, BMI, triglycerides, glucose, and smoking. Conclusions—In a population sample of adults without clinically overt atherosclerotic disease, increased NADPH oxidase activity was associated with enhanced carotid IMT, suggesting a relationship between phagocytic NADPH oxidase– mediated oxidative stress and the development of atherosclerosis

    Increased phagocytic nicotinamide adenine dinucleotide phosphate oxidase–dependent superoxide production in patients with early chronic kidney disease

    Get PDF
    Background. Oxidative stress has been implicated in the pathogenesis of atherosclerosis that develops in patients with advanced chronic kidney disease (CKD). This study was designed to investigate whether a relationship exists between phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase–dependent superoxide anion (‱O2 −) production and subclinical atherosclerosis in patients with early CKD. Methods. Superoxide production was assayed by chemiluminescence under baseline and stimulated conditions on mononuclear cells obtained from asymptomatic patients with stage 1 to 2 CKD (N = 22) and healthy controls (N = 21). Ultrasonographic determination of carotid intima-media thickness (IMT) was used to assess the presence of atherosclerosis. Results. Although there were no differences in baseline ‱O2 − production between controls and patients, the ‱O2 − production in phorbol myristate acetate–stimulated mononuclear cells was increased (P < 0.05) in patients compared with controls. The phorbol myristate acetate–induced ‱O2 − production was completely abolished by apocynin, a specific inhibitor of NADPH oxidase. A direct correlation (r = 0.441, P < 0.05) was found between plasma insulin levels and NADPH oxidase–mediated ‱O2 − production in patients. Carotid IMT was higher (P < 0.005) in patients than in controls. CarotidIMTvalues above the upper normal limit in controls were found in 70% and 40% of patients with increased or normal NADPH oxidase–mediated ‱O2 − production, respectively. Conclusion. Generation of ‱O2 − that is mainly dependent on NADPH oxidase is abnormally enhanced in patients with early CKD. It is suggested that this alteration could be related to the development of subclinical atherosclerosis in these patients

    Functional Effect of the p22phox -930A/G Polymorphism on p22phox Expression and NADPH Oxidase Activity in Hypertension

    Get PDF
    Oxidative stress induced by superoxide is implicated in hypertension. NADPH oxidase is the main source of superoxide in phagocytic and vascular cells, and the p22phox subunit is involved in NADPH oxidase activation. Recently we reported an association of 930A/G polymorphism in the human p22phox gene promoter with hypertension. This study was designed to investigate the functional role of this polymorphism in hypertension. We thus investigated the relationships between the 930A/G polymorphism and p22phox expression and NADPH oxidase–mediated superoxide production in phagocytic cells from 70 patients with essential hypertension and 70 normotensive controls. Genotyping of the polymorphism was performed by restriction fragment length polymorphism. NADPH oxidase activity was determined by chemiluminescence assays, and p22phox mRNA and protein expression was measured by Northern and Western blotting, respectively. Compared with hypertensive subjects with the AA/AG genotype, hypertensive subjects with the GG genotype exhibited increased (P 0.05) phagocytic p22phox mRNA (1.26 0.06 arbitrary unit [AU] versus 0.99 0.03 AU) and protein levels (0.58 0.05 AU versus 0.34 0.04 AU) and enhanced NADPH oxidase activity (1998 181 counts/s versus 1322 112 counts/s). No differences in these parameters were observed among genotypes in normotensive cells. Transfection experiments on vascular smooth muscle cells showed that the A-to-G substitution of this polymorphism produced an increased reporter gene expression in hypertensive cells. Nitric oxide production, as assessed by measurement of serum nitric oxide metabolites, was lower in GG hypertensive subjects than in AA/AG hypertensive subjects. In conclusion, these results suggest that hypertensive subjects carrying the GG genotype of the p22phox 930A/G polymorphism are highly exposed to NADPH oxidase-mediated oxidative stress

    Preliminary characterisation of the promoter of the human p22phox gene: identification of a new polymorphism associated with hypertension

    Get PDF
    The p22(phox) subunit is an essential protein in the activation of NAD(P)H oxidase. Here we report the preliminary characterisation of the human p22(phox) gene promoter. The p22(phox) promoter contains TATA and CCAC boxes and Sp1, gamma-interferon and nuclear factor kappaB sites. We screened for mutations in the p22(phox) promoter and identified a new polymorphism, localised at position -930 from the ATG codon, which was associated with hypertension. Mutagenesis experiments showed that the G allele had higher promoter activity than the A allele. These results suggest that the -930(A/G) polymorphism in the p22(phox) promoter may be a novel genetic marker associated with hypertension

    Association of increased phagocytic NADPH oxidasedependent superoxide production with diminished nitric oxide generation in essential hypertension

    Get PDF
    Objective: Oxidative stress has been implicated in the pathogenesis of hypertension and its complications through alterations in nitric oxide (NO) metabolism. This study was designed to investigate whether a relationship exists between phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent superoxide anion (‱O2-) production and NO generation in patients with essential hypertension. Methods: Superoxide production was assayed by chemiluminescence under baseline and stimulated conditions on mononuclear cells obtained from hypertensives (n = 51) and normotensives (n = 43). NO production was evaluated by determining serum NO metabolites, nitrate plus nitrite (NOx). Results: Although there were no differences in baseline ‱O2- production between normotensives and hypertensives, the ‱O2- production in phorbol myristate acetate (PMA)-stimulated mononuclear cells was increased (P < 0.05) in hypertensives compared with normotensives. The PMA-induced ‱O2- production was completely abolished by apocynin, a specific inhibitor of NADPH oxidase. Moreover, stimulation of ‱O2- production by angiotensin II and endothelin-1 was higher (P < 0.05) in cells from hypertensives than in cells from normotensives. In addition, diminished (P < 0.001) serum NOx was detected in hypertensives compared with normotensives. Interestingly, an inverse correlation (r = 0.493, P < 0.01) was found between ‱O2- production and NOx in hypertensives. Conclusions: Generation of ‱O2- mainly dependent on NADPH oxidase is abnormally enhanced in stimulated mononuclear cells from hypertensives. It is suggested that this alteration could be involved in the diminished NO production observed in these patients

    The A640G CYBA polymorphism associates with subclinical atherosclerosis in diabetes

    Get PDF
    Oxidative stress is implicated in diabetes. The NADPH oxidases are the main source of superoxide in phagocytic and vascular cells, and p22phox is a key subunit. Genetic variants of CYBA, the human p22phox gene, associate with cardiovascular disease. We investigated the association of the A640G polymorphism with diabetes and its impact on phagocytic NADPH oxidase-dependent superoxide production and subclinical atherosclerosis. We studied 1212 subjects in which clinical parameters including carotid intima-media thickness (cIMT) were assessed. The A640G polymorphism was genotyped by TaqMan probes. In 496 subjects, the NADPH oxidase-dependent superoxide production in peripheral blood mononuclear cells was assessed by chemiluminescence. The GG genotype prevalence was significantly higher in type 2 diabetic patients than in non-diabetic subjects. Peripheral blood mononuclear cells from diabetic GG patients presented higher NADPH oxidase-dependent superoxide production than those of diabetic AA/AG patients. Within the diabetic group, GG patients presented higher cIMT levels than AA/AG patients. The A640G CYBA polymorphism may be a marker of oxidative stress risk and may be indicative of subclinical atherosclerosis in type 2 diabetes

    The Inflammasome Drives GSDMD-Independent Secondary Pyroptosis and IL-1 Release in the Absence of Caspase-1 Protease Activity.

    Get PDF
    Inflammasomes activate the protease caspase-1, which cleaves interleukin-1ÎČ and interleukin-18 to generate the mature cytokines and controls their secretion and a form of inflammatory cell death called pyroptosis. By generating mice expressing enzymatically inactive caspase-1 &lt;sup&gt;C284A&lt;/sup&gt; , we provide genetic evidence that caspase-1 protease activity is required for canonical IL-1 secretion, pyroptosis, and inflammasome-mediated immunity. In caspase-1-deficient cells, caspase-8 can be activated at the inflammasome. Using mice either lacking the pyroptosis effector gasdermin D (GSDMD) or expressing caspase-1 &lt;sup&gt;C284A&lt;/sup&gt; , we found that GSDMD-dependent pyroptosis prevented caspase-8 activation at the inflammasome. In the absence of GSDMD-dependent pyroptosis, the inflammasome engaged a delayed, alternative form of lytic cell death that was accompanied by the release of large amounts of mature IL-1 and contributed to host protection. Features of this cell death modality distinguished it from apoptosis, suggesting it may represent a distinct form of pro-inflammatory regulated necrosis

    From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex

    Get PDF
    Recent studies have pointed out the importance of transient synchronization between widely distributed neural assemblies to understand conscious perception. These neural assemblies form intricate networks of neurons and synapses whose detailed map for mammals is still unknown and far from our experimental capabilities. Only in a few cases, for example the C. elegans, we know the complete mapping of the neuronal tissue or its mesoscopic level of description provided by cortical areas. Here we study the process of transient and global synchronization using a simple model of phase-coupled oscillators assigned to cortical areas in the cerebral cat cortex. Our results highlight the impact of the topological connectivity in the developing of synchronization, revealing a transition in the synchronization organization that goes from a modular decentralized coherence to a centralized synchronized regime controlled by a few cortical areas forming a Rich-Club connectivity pattern.Comment: 24 pages, 8 figures. Final version published in PLoS On
    • 

    corecore