54 research outputs found

    Joint analysis of left ventricular expression and circulating plasma levels of Omentin after myocardial ischemia

    Get PDF
    BACKGROUND: Omentin-1, also known as Intelectin-1 (ITLN1), is an adipokine with plasma levels associated with diabetes, obesity, and coronary artery disease. Recent studies suggest that ITLN1 can mitigate myocardial ischemic injury but the expression of ITLN1 in the heart itself has not been well characterized. The purpose of this study is to discern the relationship between the expression pattern of ITLN1 RNA in the human heart and the level of circulating ITLN1 protein in plasma from the same patients following myocardial ischemia. METHODS: A large cohort of patients (n = 140) undergoing elective cardiac surgery for aortic valve replacement were enrolled in this study. Plasma and left ventricular biopsy samples were taken at the beginning of cardiopulmonary bypass and after an average of 82 min of ischemic cross clamp time. The localization of ITLN1 in epicardial adipose tissue (EAT) was also further characterized with immunoassays and cell fate transition studies. RESULTS: mRNA expression of ITLN1 decreases in left ventricular tissue after acute ischemia in human patients (mean difference 280.48, p = 0.001) whereas plasma protein levels of ITLN1 increase (mean difference 5.24, p \u3c 0.001). Immunohistochemistry localized ITLN1 to the mesothelium or visceral pericardium of EAT. Epithelial to mesenchymal transition in mesothelial cells leads to a downregulation of ITLN1 expression. CONCLUSIONS: Myocardial injury leads to a decrease in ITLN1 expression in the heart and a corresponding increase in plasma levels. These changes may in part be due to an epithelial to mesenchymal transition of the cells that express ITLN1 following ischemia. Trial Registration Clinicaltrials.gov ID: NCT00985049

    Loss of FHL1 induces an age-dependent skeletal muscle myopathy associated with myofibrillar and intermyofibrillar disorganization in mice

    Get PDF
    Recent human genetic studies have provided evidences that sporadic or inherited missense mutations in four-and-a-half LIM domain protein 1 (FHL1), resulting in alterations in FHL1 protein expression, are associated with rare congenital myopathies, including reducing body myopathy and Emery–Dreifuss muscular dystrophy. However, it remains to be clarified whether mutations in FHL1 cause skeletal muscle remodeling owing to gain- or loss of FHL1 function. In this study, we used FHL1-null mice lacking global FHL1 expression to evaluate loss-of-function effects on skeletal muscle homeostasis. Histological and functional analyses of soleus, tibialis anterior and sternohyoideus muscles demonstrated that FHL1-null mice develop an age-dependent myopathy associated with myofibrillar and intermyofibrillar (mitochondrial and sarcoplasmic reticulum) disorganization, impaired muscle oxidative capacity and increased autophagic activity. A longitudinal study established decreased survival rates in FHL1-null mice, associated with age-dependent impairment of muscle contractile function and a significantly lower exercise capacity. Analysis of primary myoblasts isolated from FHL1-null muscles demonstrated early muscle fiber differentiation and maturation defects, which could be rescued by re-expression of the FHL1A isoform, highlighting that FHL1A is necessary for proper muscle fiber differentiation and maturation in vitro. Overall, our data show that loss of FHL1 function leads to myopathy in vivo and suggest that loss of function of FHL1 may be one of the mechanisms underlying muscle dystrophy in patients with FHL1 mutations

    Damaging variants in FOXI3 cause microtia and craniofacial microsomia

    Get PDF
    Q1Q1Pacientes con Microtia y Microsomía craneofacialPurpose: Craniofacial microsomia (CFM) represents a spectrum of craniofacial malformations, ranging from isolated microtia with or without aural atresia to underdevelopment of the mandible, maxilla, orbit, facial soft tissue, and/or facial nerve. The genetic causes of CFM remain largely unknown. Methods: We performed genome sequencing and linkage analysis in patients and families with microtia and CFM of unknown genetic etiology. The functional consequences of damaging missense variants were evaluated through expression of wild-type and mutant proteins in vitro. Results: We studied a 5-generation kindred with microtia, identifying a missense variant in FOXI3 (p.Arg236Trp) as the cause of disease (logarithm of the odds = 3.33). We subsequently identified 6 individuals from 3 additional kindreds with microtia-CFM spectrum phenotypes harboring damaging variants in FOXI3, a regulator of ectodermal and neural crest development. Missense variants in the nuclear localization sequence were identified in cases with isolated microtia with aural atresia and found to affect subcellular localization of FOXI3. Loss of function variants were found in patients with microtia and mandibular hypoplasia (CFM), suggesting dosage sensitivity of FOXI3. Conclusion: Damaging variants in FOXI3 are the second most frequent genetic cause of CFM, causing 1% of all cases, including 13% of familial cases in our cohort.https://orcid.org/0000-0003-3822-7780https://orcid.org/0000-0002-0729-6866Revista Internacional - IndexadaA1N

    Genetic Variants Associated With Cancer Therapy-Induced Cardiomyopathy

    Get PDF
    BACKGROUND: Cancer therapy-induced cardiomyopathy (CCM) is associated with cumulative drug exposures and preexisting cardiovascular disorders. These parameters incompletely account for substantial interindividual susceptibility to CCM. We hypothesized that rare variants in cardiomyopathy genes contribute to CCM. METHODS: We studied 213 patients with CCM from 3 cohorts: retrospectively recruited adults with diverse cancers (n=99), prospectively phenotyped adults with breast cancer (n=73), and prospectively phenotyped children with acute myeloid leukemia (n=41). Cardiomyopathy genes, including 9 prespecified genes, were sequenced. The prevalence of rare variants was compared between CCM cohorts and The Cancer Genome Atlas participants (n=2053), healthy volunteers (n=445), and an ancestry-matched reference population. Clinical characteristics and outcomes were assessed and stratified by genotypes. A prevalent CCM genotype was modeled in anthracycline-treated mice. RESULTS: CCM was diagnosed 0.4 to 9 years after chemotherapy; 90% of these patients received anthracyclines. Adult patients with CCM had cardiovascular risk factors similar to the US population. Among 9 prioritized genes, patients with CCM had more rare protein-altering variants than comparative cohorts ( P≤1.98e-04). Titin-truncating variants (TTNtvs) predominated, occurring in 7.5% of patients with CCM versus 1.1% of The Cancer Genome Atlas participants ( P=7.36e-08), 0.7% of healthy volunteers ( P=3.42e-06), and 0.6% of the reference population ( P=5.87e-14). Adult patients who had CCM with TTNtvs experienced more heart failure and atrial fibrillation ( P=0.003) and impaired myocardial recovery ( P=0.03) than those without. Consistent with human data, anthracycline-treated TTNtv mice and isolated TTNtv cardiomyocytes showed sustained contractile dysfunction unlike wild-type ( P=0.0004 and P<0.002, respectively). CONCLUSIONS: Unrecognized rare variants in cardiomyopathy-associated genes, particularly TTNtvs, increased the risk for CCM in children and adults, and adverse cardiac events in adults. Genotype, along with cumulative chemotherapy dosage and traditional cardiovascular risk factors, improves the identification of patients who have cancer at highest risk for CCM. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov . Unique identifiers: NCT01173341; AAML1031; NCT01371981.This work was supported in part by grants from the Instituto de Salud Carlos III (ISCIII) (PI15/01551, PI17/01941 and CB16/11/00432 to P.G-P. and L.A-P.), the Spanish Ministry of Economy and Competitiveness (SAF2015-71863-REDT to P.G-P.), the John S. LaDue Memorial Fellowship at Harvard Medical School (Y.K.), Wellcome Trust (107469/Z/15/Z to J.S.W.), Medical Research Council (intramural awards to S.A.C. and J.S.W; MR/M003191/1 to U.T), National Institute for Health Research Biomedical Research Unit at the Royal Brompton and Harefield National Health Service Foundation Trust and Imperial College London (P.J.B., S.A.C., J.S.W.), National Institute for Health Research Biomedical Research Centre at Imperial College London Healthcare National Health Service Trust and Imperial College London (D.O.R., S.A.C., S.P., J.S.W.), Sir Henry Wellcome Postdoctoral Fellowship (C.N.T.), Rosetrees and Stoneygate Imperial College Research Fellowship (N.W.), Fondation Leducq (S.A.C., C.E.S., J.G.S.), Health Innovation Challenge Fund award from the Wellcome Trust and Department of Health (UK; HICF-R6-373; S.A.C., P.J.B., J.S. W.), the British Heart Foundation (NH/17/1/32725 to D.O.R.; SP/10/10/28431 to S.A.C), Alex’s Lemonade Stand Foundation (K.G.), National Institutes of Health (R.A.: U01CA097452, R01CA133881, and U01CA097452; Z.A.: R01 HL126797; B.K.: R01 HL118018 and K23-HL095661; J.G.S. and C.E.S.: 5R01HL080494, R01HL084553), and the Howard Hughes Medical Institute (C.E.S.). The Universitario Puerta de Hierro and Virgen de la Arrixaca Hospitals are members of the European Reference Network on Rare and Complex Diseases of the Heart (Guard-Heart; http://guard-heart.ern-net.eu). This publication includes independent research commissioned by the Health Innovation Challenge Fund (HICF), a parallel funding partnership between the Department of Health and Wellcome Trust. The Centro Nacional de Investigaciones Cardiovasculares (CNIC) is supported by the Ministry of Economy, Industry and Competitiveness and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). Grants from ISCIII and the Spanish Ministry of Economy and Competitiveness are supported by the Plan Estatal de I+D+I 2013-2016 – European Regional Development Fund (FEDER) “A way of making Europe”.S

    Cells of the adult human heart

    Get PDF
    Abstract: Cardiovascular disease is the leading cause of death worldwide. Advanced insights into disease mechanisms and therapeutic strategies require a deeper understanding of the molecular processes involved in the healthy heart. Knowledge of the full repertoire of cardiac cells and their gene expression profiles is a fundamental first step in this endeavour. Here, using state-of-the-art analyses of large-scale single-cell and single-nucleus transcriptomes, we characterize six anatomical adult heart regions. Our results highlight the cellular heterogeneity of cardiomyocytes, pericytes and fibroblasts, and reveal distinct atrial and ventricular subsets of cells with diverse developmental origins and specialized properties. We define the complexity of the cardiac vasculature and its changes along the arterio-venous axis. In the immune compartment, we identify cardiac-resident macrophages with inflammatory and protective transcriptional signatures. Furthermore, analyses of cell-to-cell interactions highlight different networks of macrophages, fibroblasts and cardiomyocytes between atria and ventricles that are distinct from those of skeletal muscle. Our human cardiac cell atlas improves our understanding of the human heart and provides a valuable reference for future studies
    corecore