2,253 research outputs found

    Thin presentation of knots and lens spaces

    Full text link
    This paper concerns thin presentations of knots K in closed 3-manifolds M^3 which produce S^3 by Dehn surgery, for some slope gamma. If M does not have a lens space as a connected summand, we first prove that all such thin presentations, with respect to any spine of M have only local maxima. If M is a lens space and K has an essential thin presentation with respect to a given standard spine (of lens space M) with only local maxima, then we show that K is a 0-bridge or 1-bridge braid in M; furthermore, we prove the minimal intersection between K and such spines to be at least three, and finally, if the core of the surgery K_gamma yields S^3 by r-Dehn surgery, then we prove the following inequality: |r| <= 2g, where g is the genus of K_gamma.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol3/agt-3-23.abs.htm

    Cutting Edge : Failure of Antigen-Specific CD4+ T Cell Recruitment to the Kidney during Systemic Candidiasis

    Get PDF
    Copyright © 2014 The Authors. Acknowledgments We thank E. Bolton and H. Bagavant for reagents and advice. We also acknowledge the staff of the Medical Research Facility at the University of Aberdeen for care of the animals used in this study. This work was supported by the Medical Research Council and the Wellcome Trust.Peer reviewedPublisher PD

    The non-unique Universe

    Get PDF
    The purpose of this paper is to elucidate, by means of concepts and theorems drawn from mathematical logic, the conditions under which the existence of a multiverse is a logical necessity in mathematical physics, and the implications of Godel's incompleteness theorem for theories of everything. Three conclusions are obtained in the final section: (i) the theory of the structure of our universe might be an undecidable theory, and this constitutes a potential epistemological limit for mathematical physics, but because such a theory must be complete, there is no ontological barrier to the existence of a final theory of everything; (ii) in terms of mathematical logic, there are two different types of multiverse: classes of non-isomorphic but elementarily equivalent models, and classes of model which are both non-isomorphic and elementarily inequivalent; (iii) for a hypothetical theory of everything to have only one possible model, and to thereby negate the possible existence of a multiverse, that theory must be such that it admits only a finite model

    Theory of an optical dipole trap for cold atoms

    Get PDF
    The theory of an atom dipole trap composed of a focused, far red-detuned, trapping laser beam, and a pair of red-detuned, counterpropagating, cooling beams is developed for the simplest realistic multilevel dipole interaction scheme based on a model of a (3+5)-level atom. The description of atomic motion in the trap is based on the quantum kinetic equations for the atomic density matrix and the reduced quasiclassical kinetic equation for atomic distribution function. It is shown that when the detuning of the trapping field is much larger than the detuning of the cooling field, and with low saturation, the one-photon absorption (emission) processes responsible for the trapping potential can be well separated from the two-photon processes responsible for sub-Doppler cooling atoms in the trap. Two conditions are derived that are necessary and sufficient for stable atomic trapping. The conditions show that stable atomic trapping in the optical dipole trap can be achieved when the trapping field has no effect on the two-photon cooling process and when the cooling field does not change the structure of the trapping potential but changes only the numerical value of the trapping potential well. It is concluded that the separation of the trapping and cooling processes in a pure optical dipole trap allows one to cool trapped atoms down to a minimum temperature close to the recoil temperature, keeping simultaneously a deep potential well

    Probing the embedded YSOs of the R CrA region through VLT-ISAAC spectroscopy

    Full text link
    Near IR spectra obtained with ISAAC at VLT, have been used to pose constraints on the evolutionary state and accretion properties of a sample of five embedded YSOs located in the R CrA core. This sample includes three Class I sources (HH100 IR, IRS2 and IRS5), and two sources with NIR excesses (IRS6 and IRS3). Absorption lines have been detected in the medium resolution spectra of all the observed targets, together with emission lines likely originating in the disk-star-wind connected regions. We derived spectral types, veiling and stellar luminosity of the five observed sources, which in turn have been used to infer their mass and age adopting pre-main sequence evolutionary tracks. We find that in HH100 IR and IRS2 most of the bolometric luminosity is due to accretion, while the other three investigated sources, including the Class I object IRS5a, present a low accretion activity (L_{acc}/L_{bol} < 0.2). We observe a general correlation between the accretion luminosity, the IR veiling and the emission line activity of the sources. A correlation between the accretion activity and the spectral energy distribution slope is recognizable but with the notable exception of IRS5a. Our analysis therefore shows how the definition of the evolutionary stage of deeply embedded YSOs by means of IR colors needs to be more carefully refined.Comment: 17 pages, 13 figures, accepted on A&

    Biofabrication of human articular cartilage: a path towards the development of a clinical treatment

    Get PDF
    Cartilage injuries cause pain and loss of function, and if severe may result in osteoarthritis (OA). 3D bioprinting is now a tangible option for the delivery of bioscaffolds capable of regenerating the deficient cartilage tissue. Our team has developed a handheld device, the Biopen, to allow in situ additive manufacturing during surgery. Given its ability to extrude in a core/shell manner, the Biopen can preserve cell viability during the biofabrication process, and it is currently the only biofabrication tool tested as a surgical instrument in a sheep model using homologous stem cells. As a necessary step toward the development of a clinically relevant protocol, we aimed to demonstrate that our handheld extrusion device can successfully be used for the biofabrication of human cartilage. Therefore, this study is a required step for the development of a surgical treatment in human patients. In this work we specifically used human adipose derived mesenchymal stem cells (hADSCs), harvested from the infrapatellar fat pad of donor patients affected by OA, to also prove that they can be utilized as the source of cells for the future clinical application. With the Biopen, we generated bioscaffolds made of hADSCs laden in gelatin methacrylate, hyaluronic acid methacrylate and cultured in the presence of chondrogenic stimuli for eight weeks in vitro. A comprehensive characterisation including gene and protein expression analyses, immunohistology, confocal microscopy, second harmonic generation, light sheet imaging, atomic force mycroscopy and mechanical unconfined compression demonstrated that our strategy resulted in human hyaline-like cartilage formation. Our in situ biofabrication approach represents an innovation with important implications for customizing cartilage repair in patients with cartilage injuries and OA

    Primary structure and comparative sequence-analysis of an insect apolipoprotein: apolipophorin-Iii from Manduca-sexta

    Get PDF
    The amino acid sequence of an insect apolipoprotein, apolipophorin-III from Manduca sexta, was determined by a combination of cDNA and protein sequencing. The mature hemolymph protein consists of 166 amino acids. The cDNA also encodes for an amino-terminal extension of 23 amino acids which is not represented in the mature hemolymph protein. The existence of a precursor protein was confirmed by in vitro translation of fat body mRNA. Computer-assisted comparative sequence analysis revealed the following points: 1) the protein is composed of tandemly repeating tetradecapeptide units with a high potential for forming amphiphilic helical structures. Compared to mammalian apolipoproteins the repeat units in the insect apolipoprotein show considerable length variability; 2) the sequence has a striking resemblance to several human apolipoproteins including apoE, AIV, AI, and CI. However, the homology seems to be entirely functional since, although the insect and mammalian apoproteins contain very similar types of amino acid residues, the actual degree of sequence identity is quite low. Whether the mammalian and insect apoproteins are derived from a common ancestral amphiphilic helix forming, lipid-binding protein, or arose by convergent evolution can not be determined at present. This represents the first complete amino acid sequence for an insect apolipoprotein

    MelLec Exacerbates the Pathogenesis of Aspergillus fumigatus-Induced Allergic Inflammation in Mice

    Get PDF
    ACKNOWLEDGMENTS We thank the staff of the University of Aberdeen animal facility for their support and care for our animals. We also would like to express gratitude to Linda Duncan and Ailsa Laird of the Ian Fraser Cytometry Centre at the University of Aberdeen for their technical support and advice. Funding was provided by the Wellcome Trust (102705, 097377) and the Medical Research Council Centre for Medical Mycology (MR/N006364/2). For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. KT received a research fellowship from The Jikei University School of Medicine.Peer reviewedPublisher PD

    Hybrid nanomembranes for high power and high energy density supercapacitors and their yarn application

    Get PDF
    Ultrathin (thicknessnm) electrically conducting membranes can be used as electrodes for sensors, actuators, optical devices, fuel cells, scaffolds for assembling nanoparticles, and separation of biological macromolecules.1-6 Various approaches have been suggested for the fabrication of free-standing nanomembranes based on organic polymers and/or inorganic materials: spin-casting of films,7 layer-by-layer assembly of polyelectrolyte multilayers,8 cross-linking of self-assembled monolayers,9 and assembly of triblock copolymers.10,11 Loading materials such as gold nanoparticles12 or carbon nanotubes13 make membranes robust and electrically conductive. However, these methods are often time-consuming and have some limitations in terms of achievable electrical and electrochemical membrane performance as well as scale-up. Alternative approaches are needed for the preparation of mechanically robust, free-standing, conductive nanomembranes that could be easily manufactured

    Response Characterization of Electroactive Polymers as Mechanical Sensors

    Full text link
    corecore