7,964 research outputs found

    Mechanical strain isolator mount

    Get PDF
    Certain devices such as optical instruments must preserve their alignmental integrity while being subjected to mechanical strain. A mechanical strain isolator mount is provided to preserve the alignmental integrity of an alignment sensitive instrument. An alignment sensitive instrument is mounted on a rectangular base. Flexural legs are connected at their proximal ends to the rectangular base. Flexural legs are also spaced parallel to the sides. Mounting pads are connected to the legs at the distal end and the mechanical strain isolator mount is attached to the substrate by means of threaded bolts. When a mounting pad and its respective leg is subjected to lateral strain in either the X or Y direction via the substrate, the respective leg relieves the strain by bending in the direction of the strain. An axial strain on a mounting pad in the Z direction is relieved by a rotational motion of the legs in the direction of the strain. When the substrate is stress free, the flexural legs return to their original condition and thus preserve the original alignment integrity of the alignment sensitive instrument

    Narrow Row Soybeans Alternative Systems

    Get PDF
    PDF pages:

    The effect of ambient temperature on cold start urban traffic emissions for a real world SI car

    Get PDF
    The influence of ambient temperature on exhaust emissions for an instrumented Euro 1 SI car was determined. A real world test cycle was used, based on an urban drive cycle that was similar to the ECE urban drive cycle. It was based on four laps of a street circuit and an emissions sample bag was taken for each lap. The bag for the first lap was for the cold start emissions. An in-vehicle direct exhaust dual bag sampling technique was used to simultaneously collect exhaust samples upstream and downstream of the three-way catalyst (TWC). The cold start tests were conducted over a year, with ambient temperatures ranging from – 2°C to 32°C. The exhaust system was instrumented with thermocouples so that the catalyst light off temperature could be determined. The results showed that CO emissions for the cold start were reduced by a factor of 8 downstream of catalyst when ambient temperature rose from -2°C to 32°C, the corresponding hydrocarbon emissions were reduced by a factor of 4. There was no clear relationship between NOx emissions and ambient temperature. For subsequent laps of the test circuit the reduction of CO and HC emissions as a function of ambient temperature was lower. The time for catalyst light off increased by 50% as the ambient temperature was reduced. The results show that the vehicle used is unlikely to meet the new – 7oC cold start CO emission regulations

    Short-Run Economic Impacts of Hurricane Katrina (and Rita)

    Get PDF
    Sturm; Erdölförderung; Offshore-Industrie; Makroökonomischer Einfluss; USA

    P18. Backstroke Start Performance: The Impact of Using the Omega Backstroke Ledge

    Get PDF
    Background: FINA recently approved use of the “backstroke ledge” (Omega OBL2) to improve backstroke start performance in competition, but its performance has not been thoroughly evaluated. The purpose of this study was to compare starts performed on a flat wall to those performed with the OBL2, and to identify factors that contribute to better start performance. Methods: Ten elite backstroke swimmers performed three flat-wall and three OBL2 starts. Horizontal impulse, vertical impulse, takeoff velocity and takeoff angle were calculated from the force plate data. Entry distance, time to 10 m and start of hip and knee extension were recorded using digital video cameras. Results: We determined that starts performed with the OBL2 had a faster time to 10 m, less variability in vertical impulse and greater entry distance. Time to 10 m and head entry distance had a significant negative correlation. Starts with the OBL2 also had a trend toward lower resultant takeoff velocity, lower horizontal impulse and greater COM takeoff angle. Discussion and Conclusions: The OBL2 appears to provide a performance advantage by allowing an increased head entry distance, rather than larger impulse on the wall. Additional studies are needed to evaluate the factors that contribute to improved performance when using the OBL2. Coaches may consider head entry distance as a training target. Athletes should use the OBL2 in training and competition to ensure optimal start performance. Interdisciplinary Reflection: Concepts from physical and biological sciences are combined to explain the factors which affect backstroke start performance

    Application of a portable FTIR for measuring on-road emissions

    Get PDF
    The objective of this work was the development of an onroad in-vehicle emissions measurement technique utilizing a relatively new, commercial, portable Fourier Transform Infra-Red (FTIR) Spectrometer capable of identifying and measuring (at approximately 3 second intervals) up to 51 different compounds. The FTIR was installed in a medium class EURO1 spark ignition passenger vehicle in order to measure on-road emissions. The vehicle was also instrumented to allow the logging of engine speed, road speed, global position, throttle position, air-fuel ratio, air flow and fuel flow in addition to engine, exhaust and catalyst temperatures. This instrumentation allowed the calculation of massbased emissions from the volume-based concentrations measured by the FTIR. To validate the FTIR data, the instrument was used to measure emissions from an engine subjected to a real-world drive cycle using an AC dynamometer. Standard analyzers were operated simultaneously for comparison with the FTIR and the standard analyzer results showed that most pollutants (NOx, CO2, CO) were within ~10% of a standard analyzer during steady state conditions and within 20% during transients. The exception to this was total HC which was generally 50% or less than actual total HC, but this was due to the limited number of hydrocarbons measured by the FTIR. In addition to the regulated emissions, five toxic hydrocarbon species were analyzed and found to be sensitive to cold starts in varying proportions. Finally, FTIR data was compared to results from a commercially available on-road measurement system (Horiba OBS- 1000), and there was good agreement

    Dynamic plantar loading index detects altered foot function in individuals with rheumatoid arthritis but not changes due to orthotic use

    Get PDF
    Background Altered foot function is common in individuals with rheumatoid arthritis. Plantar pressure distributions during gait are regularly assessed in this patient group; however, the association between frequently reported magnitude-based pressure variables and clinical outcomes has not been clearly established. Recently, a novel approach to the analysis of plantar pressure distributions throughout stance phase, the dynamic plantar loading index, has been proposed. This study aimed to assess the utility of this index for measuring foot function in individuals with rheumatoid arthritis.Methods Barefoot plantar pressures during gait were measured in 63 patients with rheumatoid arthritis and 51 matched controls. Additionally, 15 individuals with rheumatoid arthritis had in-shoe plantar pressures measured whilst walking in standardized footwear for two conditions: shoes-only; and shoes with prescribed custom foot orthoses. The dynamic plantar loading index was determined for all participants and conditions. Patient and control groups were compared for significant differences as were the shod and orthosis conditions.Findings The patient group was found to have a mean index of 0.19, significantly lower than the control group's index of 0.32 (p > 0.001, 95% CI [0.054, 0.197]). No significant differences were found between the shoe-only and shoe plus orthosis conditions. The loading index was found to correlate with clinical measures of structural deformity.Interpretation The dynamic plantar loading index may be a useful tool for researchers and clinicians looking to objectively assess dynamic foot function in patients with rheumatoid arthritis; however, it may be unresponsive to changes caused by orthotic interventions in this patient group.</p

    Line Strengths of Rovibrational and Rotational Transitions in the X2Π^2\Pi Ground State of OH

    Get PDF
    A new line list including positions and absolute intensities (in the form of Einstein AA values and oscillator strengths) has been produced for the OH ground X\DP\ state rovibrational (Meinel system) and pure rotational transitions. All possible transitions are included with v\primed and v\Dprimed up to 13, and JJ up to between 9.5 and 59.5, depending on the band. An updated fit to determine molecular constants has been performed, which includes some new rotational data and a simultaneous fitting of all molecular constants. The absolute line intensities are based on a new dipole moment function, which is a combination of two high level ab initio calculations. The calculations show good agreement with an experimental v=1 lifetime, experimental μv\mu_\mathrm{v} values, and Δ\Deltav=2 line intensity ratios from an observed spectrum. To achieve this good agreement, an alteration in the method of converting matrix elements from Hund's case (b) to (a) was made. Partitions sums have been calculated using the new energy levels, for the temperature range 5-6000 K, which extends the previously available (in HITRAN) 70-3000 K range. The resulting absolute intensities have been used to calculate O abundances in the Sun, Arcturus, and two red giants in the Galactic open and globular clusters M67 and M71. Literature data based mainly on [O I] lines are available for the Sun and Arcturus, and excellent agreement is found.Comment: 17 pages, 8 figues. 7 supplementary files: dipole moment functions (OH-X-DMFs.txt), equilibrium constants (OH-X-Equilibrium_Constants.txt), partition function (OH-X-Q_5-6000K.dat), PGOPHER file with molecular constants and transition matric elements (OH-XX.pgo), vibrational Einstein A and f values (OH-XX-Avv_fvv.txt), line list (OH-XX-Line_list.txt), and OH-Transformation_Equation_Extra.doc

    The InfraRed Imaging Spectrograph (IRIS) for TMT: Reflective ruled diffraction grating performance testing and discussion

    Get PDF
    We present the efficiency of near-infrared reflective ruled diffraction gratings designed for the InfraRed Imaging Spectrograph (IRIS). IRIS is a first light, integral field spectrograph and imager for the Thirty Meter Telescope (TMT) and narrow field infrared adaptive optics system (NFIRAOS). We present our experimental setup and analysis of the efficiency of selected reflective diffraction gratings. These measurements are used as a comparison sample against selected candidate Volume Phase Holographic (VPH) gratings (see Chen et al., this conference). We investigate the efficiencies of five ruled gratings designed for IRIS from two separate vendors. Three of the gratings accept a bandpass of 1.19-1.37 {\mu}m (J band) with ideal spectral resolutions of R=4000 and R=8000, groove densities of 249 and 516 lines/mm, and blaze angles of 9.86 and 20.54 degrees, respectively. The other two gratings accept a bandpass of 1.51-1.82 {\mu}m (H Band) with an ideal spectral resolution of R=4000, groove density of 141 lines/mm, and blaze angle of 9.86{\deg}. We measure the efficiencies off blaze angle for all gratings and the efficiencies between the polarization transverse magnetic (TM) and transverse electric (TE) states. The peak reflective efficiencies are 98.90 +/- 3.36% (TM) and 84.99 +/- 2.74% (TM) for the H-band R=4000 and J-band R=4000 respectively. The peak reflective efficiency for the J-band R=8000 grating is 78.78 +/- 2.54% (TE). We find that these ruled gratings do not exhibit a wide dependency on incident angle within +/-3{\deg}. Our best-manufactured gratings were found to exhibit a dependency on the polarization state of the incident beam with a ~10-20% deviation, consistent with the theoretical efficiency predictions.Comment: Proceedings of the SPIE, 9147-34
    • …
    corecore