1,332 research outputs found
Categorisation and Detection of Dark Matter Candidates from String/M-theory Hidden Sectors
We study well-motivated dark matter candidates arising from weakly-coupled
hidden sectors in compactified string/-theory. Imposing generic top-down
constraints greatly restricts allowed candidates. By considering the possible
mechanisms for achieving the correct dark matter relic density, we compile
categories of viable dark matter candidates and annihilation mediators. We
consider the case where supersymmetry breaking occurs via moduli stabilisation
and is gravitationally mediated to the visible and other hidden sectors,
without assuming sequestering of the sector in which supersymmetry is broken.
We find that in this case, weakly-coupled hidden sectors only allow for
fermionic dark matter. Additionally, most of the mechanisms for obtaining the
full relic density only allow for a gauge boson mediator, such as a dark .
Given these considerations, we study the potential for discovering or
constraining the allowed parameter space given current and future direct
detection experiments, and direct production at the LHC. We also present a
model of a hidden sector which would contain a satisfactory dark matter
candidate.Comment: 29 pages, 10 figure
Rainfall interception and redistribution by a common North American understory and pasture forb, \u3cem\u3eEupatorium capillifolium\u3c/em\u3e (Lam. dogfennel)
In vegetated landscapes, rain must pass through plant canopies and litter to enter soils. As a result, some rainwater is returned to the atmosphere (i.e., interception, I) and the remainder is partitioned into a canopy (and gap) drip flux (i.e., throughfall) or drained down the stem (i.e., stemflow). Current theoretical and numerical modeling frameworks for this process are almost exclusively based on data from woody overstory plants. However, herbaceous plants often populate the understory and are the primary cover for important ecosystems (e.g., grasslands and croplands). This study investigates how overstory throughfall (PT,o) is partitioned into understory I, throughfall (PT) and stemflow (PS) by a dominant forb in disturbed urban forests (as well as grasslands and pasturelands), Eupatorium capillifolium (Lam., dogfennel). Dogfennel density at the site was 56 770 stems ha−1, enabling water storage capacities for leaves and stems of 0.90±0.04 and 0.43±0.02 mm, respectively. As direct measurement of PT,o (using methods such as tipping buckets or bottles) would remove PT,o or disturb the understory partitioning of PT,o, overstory throughfall was modeled (PT,o′ role= presentation \u3eP′T,o) using on-site observations of PT,o from a previous field campaign. Relying on modeled PT,o′ role= presentation \u3eP′T,o, rather than on observations of PT,o directly above individual plants means that significant uncertainty remains with respect to (i) small-scale relative values of PT and PS and (ii) factors driving PS variability among individual dogfennel plants. Indeed, PS data from individual plants were highly skewed, where the mean PS:PT,o′ role= presentation \u3ePS:P′T,o per plant was 36.8 %, but the median was 7.6 % (2.8 %–27.2 % interquartile range) and the total over the study period was 7.9 %. PS variability (n=30 plants) was high (CV \u3e 200 %) and may hypothetically be explained by fine-scale spatiotemporal patterns in actual overstory throughfall (as no plant structural factors explained the variability). The total PT:PT,o′ role= presentation \u3ePT:P′T,o was 71 % (median PT:PT,o′ role= presentation \u3ePT:P′T,o per gauge was 72 %, with a 59 %–91 % interquartile range). Occult precipitation (mixed dew and light rain events) occurred during the study period, revealing that dogfennel can capture and drain dew to their stem base as PS. Dew-induced PS may help explain dogfennel\u27s improved invasion efficacy during droughts (as it tends to be one of the most problematic weeds in the improved grazing systems in the southeastern US). Overall, dogfennel\u27s precipitation partitioning differed markedly from the site\u27s overstory trees (Pinus palustris), and a discussion of the limited literature suggests that these differences may exist across vegetated ecosystems. Thus, more research on herbaceous plant canopy interactions with precipitation is merited
Views and uses of sepsis digital alerts in national health service trusts in England: qualitative study with health care professionals
Background:
Sepsis is a common cause of serious illness and death. Sepsis management remains challenging and suboptimal. To support rapid sepsis diagnosis and treatment, screening tools have been embedded into hospital digital systems to appear as digital alerts. The implementation of digital alerts to improve the management of sepsis and deterioration is a complex intervention that has to fit with team workflow and the views and practices of hospital staff. Despite the importance of human decision-making and behavior in optimal implementation, there are limited qualitative studies that explore the views and experiences of health care professionals regarding digital alerts as sepsis or deterioration computerized clinician decision support systems (CCDSSs).
Objective:
This study aims to explore the views and experiences of health care professionals on the use of sepsis or deterioration CCDSSs and to identify barriers and facilitators to their implementation and use in National Health Service (NHS) hospitals.
Methods:
We conducted a qualitative, multisite study with unstructured observations and semistructured interviews with health care professionals from emergency departments, outreach teams, and intensive or acute units in 3 NHS hospital trusts in England. Data from both interviews and observations were analyzed together inductively using thematic analysis.
Results:
A total of 22 health care professionals were interviewed, and 12 observation sessions were undertaken. A total of four themes regarding digital alerts were identified: (1) support decision-making as nested in electronic health records, but never substitute professionals’ knowledge and experience; (2) remind to take action according to the context, such as the hospital unit and the job role; (3) improve the alerts and their introduction, by making them more accessible, easy to use, not intrusive, more accurate, as well as integrated across the whole health care system; and (4) contextual factors affecting views and use of alerts in the NHS trusts. Digital alerts are more optimally used in general hospital units with a lower senior decision maker:patient ratio and by health care professionals with experience of a similar technology. Better use of the alerts was associated with quality improvement initiatives and continuous sepsis training. The trusts’ features, such as the presence of a 24/7 emergency outreach team, good technological resources, and staffing and teamwork, favored a more optimal use.
Conclusions:
Trust implementation of sepsis or deterioration CCDSSs requires support on multiple levels and at all phases of the intervention, starting from a prego-live analysis addressing organizational needs and readiness. Advancements toward minimally disruptive and smart digital alerts as sepsis or deterioration CCDSSs, which are more accurate and specific but at the same time scalable and accessible, require policy changes and investments in multidisciplinary research
The Radial Distribution of the Interstellar Medium in Disk Galaxies: Evidence for Secular Evolution
One possible way for spiral galaxies to internally evolve would be for gas to flow to the center and form stars in a central disk (pseudo-bulge). If the inflow rate is faster than the rate of star formation, a central concentration of gas will form. In this paper we present radial profiles of stellar and 8 μm emission from polycyclic aromatic hydrocarbons (PAHs) for 11 spiral galaxies to investigate whether the interstellar medium in these galaxies contains a central concentration above that expected from the exponential disk. In general, we find that the two-dimensional CO and PAH emission morphologies are similar, and that they exhibit similar radial profiles. We find that in 6 of the 11 galaxies there is a central excess in the 8 μm and CO emission above the inward extrapolation of an exponential disk. In particular, all four barred galaxies in the sample have strong central excesses in both 8 μm and CO emission. These correlations suggest that the excess seen in the CO profiles is, in general, not simply due to a radial increase in the CO emissivity. In the inner disk, the ratio of the stellar to the 8 μm radial surface brightness is similar for 9 of the 11 galaxies, suggesting a physical connection between the average stellar surface brightness and the average gas surface brightness at a given radius. We also find that the ratio of the CO to 8 μm PAH surface brightness is consistent over the sample, implying that the 8 μm PAH surface brightness can be used as an approximate tracer of the interstellar medium
Phosphorus Fertilization Can Improve Young Almond Tree Growth in Multiple Replant Settings
Young almond (Prunus amygdalus) orchards replanted where old orchards of stone fruits (Prunus sp.) have been removed are subject to physical, chemical, and biotic stressors. Among biotic challenges, for example, is almond/stone fruit replant disease (ARD; formally known as Prunus replant disease), which specifically suppresses the growth and yields of successive almond and other stone fruit plantings and is caused, in part, by a soil microbial complex. During four orchard trials representing different almond replant practices and scenarios in the San Joaquin Valley in California, we examined the impacts of phosphorus (P) fertilization on the growth of replanted almond. During all trials, P was applied to tree root zones just after replanting, and the impact was assessed according to trunk cross-sectional area (TCSA) growth for 2 years. Expt. 1 was performed where a previous almond orchard was cleared using whole orchard recycling (i.e., the old orchard was “chipped” and then turned into the soil). The land was replanted without preplant soil fumigation. We tested separate fertilizer treatments based on various P, nitrogen, micronutrient, and “complete” formulations. Expt. 2 was also performed where an old almond orchard was recycled, but the soil was preplant-fumigated before replanting. Here, we tested only P fertilization. Expts. 3 and 4 were conducted where an old peach (Prunus persica) orchard was removed. Here, P and nitrogen fertilizer treatments were tested among additional factors, including preplant soil fumigation (Expts. 3, 4) and whole orchard recycling chips (Expt. 4). During all four trials, P fertilization (P at 2.2 to 2.6 oz/tree within a few weeks after planting) significantly increased TCSA growth. The growth benefit was nuanced, however, by almond cultivar, date of replanting, rootstock, and other site-specific factors. Although P fertilization did not match the benefit of preplant soil fumigation for the management of ARD, our data indicated that P fertilization can improve the growth of young almond orchards in diverse replant settings with or without preplant soil fumigation and should be considered by California almond producers as a general best management practice
The Incidence of Highly-Obscured Star-Forming Regions in SINGS Galaxies
Using the new capabilities of the Spitzer Space Telescope and extensive
multiwavelength data from the Spitzer Infrared Nearby Galaxies Survey (SINGS),
it is now possible to study the infrared properties of star formation in nearby
galaxies down to scales equivalent to large HII regions. We are therefore able
to determine what fraction of large, infrared-selected star-forming regions in
normal galaxies are highly obscured and address how much of the star formation
we miss by relying solely on the optical portion of the spectrum. Employing a
new empirical method for deriving attenuations of infrared-selected
star-forming regions we investigate the statistics of obscured star formation
on 500pc scales in a sample of 38 nearby galaxies. We find that the median
attenuation is 1.4 magnitudes in H-alpha and that there is no evidence for a
substantial sub-population of uniformly highly-obscured star-forming regions.
The regions in the highly-obscured tail of the attenuation distribution
(A_H-alpha > 3) make up only ~4% of the sample of nearly 1800 regions, though
very embedded infrared sources on the much smaller scales and lower
luminosities of compact and ultracompact HII regions are almost certainly
present in greater numbers. The highly-obscured cases in our sample are
generally the bright, central regions of galaxies with high overall attenuation
but are not otherwise remarkable. We also find that a majority of the galaxies
show decreasing radial trends in H-alpha attenuation. The small fraction of
highly-obscured regions seen in this sample of normal, star-forming galaxies
suggests that on 500pc scales the timescale for significant dispersal or break
up of nearby, optically-thick dust clouds is short relative to the lifetime of
a typical star-forming region.Comment: Accepted for publication in ApJ; emulateapj style, 30 pages, 18
figures (compressed versions), 3 table
Warm Dust and Spatially Variable PAH Emission in the Dwarf Starburst Galaxy NGC 1705
We present Spitzer observations of the dwarf starburst galaxy NGC 1705
obtained as part of SINGS. The galaxy morphology is very different shortward
and longward of ~5 microns: short-wavelength imaging shows an underlying red
stellar population, with the central super star cluster (SSC) dominating the
luminosity; longer-wavelength data reveals warm dust emission arising from two
off-nuclear regions offset by ~250 pc from the SSC. These regions show little
extinction at optical wavelengths. The galaxy has a relatively low global dust
mass (~2E5 solar masses, implying a global dust-to-gas mass ratio ~2--4 times
lower than the Milky Way average). The off-nuclear dust emission appears to be
powered by photons from the same stellar population responsible for the
excitation of the observed H Alpha emission; these photons are unassociated
with the SSC (though a contribution from embedded sources to the IR luminosity
of the off-nuclear regions cannot be ruled out). Low-resolution IRS
spectroscopy shows moderate-strength PAH emission in the 11.3 micron band in
the eastern peak; no PAH emission is detected in the SSC or the western dust
emission complex. There is significant diffuse 8 micron emission after scaling
and subtracting shorter wavelength data; the spatially variable PAH emission
strengths revealed by the IRS data suggest caution in the interpretation of
diffuse 8 micron emission as arising from PAH carriers alone. The metallicity
of NGC 1705 falls at the transition level of 35% solar found by Engelbracht and
collaborators; the fact that a system at this metallicity shows spatially
variable PAH emission demonstrates the complexity of interpreting diffuse 8
micron emission. A radio continuum non-detection, NGC 1705 deviates
significantly from the canonical far-IR vs. radio correlation. (Abridged)Comment: ApJ, in press; please retrieve full-resolution version from
http://www.astro.wesleyan.edu/~cannon/pubs.htm
The emission by dust and stars of nearby galaxies in the Herschel KINGFISH survey
Using new far-infrared imaging from the Herschel Space Observatory with ancillary data from ultraviolet (UV) to submillimeter wavelengths, we estimate the total emission from dust and stars of 62 nearby galaxies in the KINGFISH survey in a way that is as empirical and model independent as possible. We collect and exploit these data in order to measure from the spectral energy distributions (SEDs) precisely how much stellar radiation is intercepted and re-radiated by dust, and how this quantity varies with galaxy properties. By including SPIRE data, we are more sensitive to emission from cold dust grains than previous analyses at shorter wavelengths, allowing for more accurate estimates of dust temperatures and masses. The dust/stellar flux ratio, which we measure by integrating the SEDs, has a range of nearly three decades (from 10(-2.2) to 10(0.5)). The inclusion of SPIRE data shows that estimates based on data not reaching these far-IR wavelengths are biased low by 17% on average. We find that the dust/stellar flux ratio varies with morphology and total infrared (IR) luminosity, with dwarf galaxies having faint luminosities, spirals having relatively high dust/stellar ratios and IR luminosities, and some early types having low dust/stellar ratios. We also find that dust/stellar flux ratios are related to gas-phase metallicity ((log(f(dust)/f(*)) over bar) = -0.66 +/- 0.08 and -0.22 +/- 0.12 for metal-poor and intermediate-metallicity galaxies, respectively), while the dust/stellar mass ratios are less so (differing by approximate to 0.2 dex); the more metal-rich galaxies span a much wider range of the flux ratios. In addition, the substantial scatter between dust/stellar flux and dust/stellar mass indicates that the former is a poor proxy of the latter. Comparing the dust/stellar flux ratios and dust temperatures, we also show that early types tend to have slightly warmer temperatures (by up to 5 K) than spiral galaxies, which may be due to more intense interstellar radiation fields, or possibly to different dust grain compositions. Finally, we show that early types and early-type spirals have a strong correlation between the dust/stellar flux ratio and specific star formation rate, which suggests that the relatively bright far-IR emission of some of these galaxies is due to ongoing (if limited) star formation as well as to the radiation field from older stars, which is heating the dust grains
The Nature of Infrared Emission in the Local Group Dwarf Galaxy NGC 6822 As Revealed by Spitzer
We present Spitzer imaging of the metal-deficient (Z ~30% Z_sun) Local Group
dwarf galaxy NGC 6822. On spatial scales of ~130 pc, we study the nature of IR,
H alpha, HI, and radio continuum emission. Nebular emission strength correlates
with IR surface brightness; however, roughly half of the IR emission is
associated with diffuse regions not luminous at H alpha (as found in previous
studies). The global ratio of dust to HI gas in the ISM, while uncertain at the
factor of ~2 level, is ~25 times lower than the global values derived for
spiral galaxies using similar modeling techniques; localized ratios of dust to
HI gas are about a factor of five higher than the global value in NGC 6822.
There are strong variations (factors of ~10) in the relative ratios of H alpha
and IR flux throughout the central disk; the low dust content of NGC 6822 is
likely responsible for the different H alpha/IR ratios compared to those found
in more metal-rich environments. The H alpha and IR emission is associated with
high-column density (> ~1E21 cm^-2) neutral gas. Increases in IR surface
brightness appear to be affected by both increased radiation field strength and
increased local gas density. Individual regions and the galaxy as a whole fall
within the observed scatter of recent high-resolution studies of the radio-far
IR correlation in nearby spiral galaxies; this is likely the result of depleted
radio and far-IR emission strengths in the ISM of this dwarf galaxy.Comment: ApJ, in press; please retrieve full-resolution version from
http://www.astro.wesleyan.edu/~cannon/pubs.htm
Communicating with providers about racial healthcare disparities: The role of providers’ prior beliefs on their receptivity to different narrative frames
Objective
Evaluate narratives aimed at motivating providers with different pre-existing beliefs to address racial healthcare disparities.
Methods
Survey experiment with 280 providers. Providers were classified as high or low in attributing disparities to providers (HPA versus LPA) and were randomly assigned to a non-narrative control or 1 of 2 narratives: “Provider Success” (provider successfully resolved problem involving Black patient) and “Provider Bias” (Black patient experienced racial bias, which remained unresolved). Participants' reactions to narratives (including identification with narrative) and likelihood of participating in disparities-reduction activities were immediately assessed. Four weeks later, participation in those activities was assessed, including self-reported participation in a disparities-reduction training course (primary outcome).
Results
Participation in training was higher among providers randomized to the Provider Success narrative compared to Provider Bias or Control. LPA participants had higher identification with Provider Success than Provider Bias narratives, whereas among HPA participants, differences in identification between the narratives were not significant.
Conclusions
Provider Success narratives led to greater participation in training than Provider Bias narratives, although providers’ pre-existing beliefs influenced the narrative they identified with.
Practice implications
Provider Success narratives may be more effective at motivating providers to address disparities than Provider Bias narratives, though more research is needed
- …