120 research outputs found
Ectopic Fat Accumulation in Distinct Insulin Resistant Phenotypes; Targets for Personalized Nutritional Interventions
Cardiometabolic diseases are one of the leading causes for disability and mortality in the Western world. The prevalence of these chronic diseases is expected to rise even further in the next decades. Insulin resistance (IR) and related metabolic disturbances are linked to ectopic fat deposition, which is the storage of excess lipids in metabolic organs such as liver and muscle. Notably, a vicious circle exists between IR and ectopic fat, together increasing the risk for the development of cardiometabolic diseases. Nutrition is a key-determining factor for both IR and ectopic fat deposition. The macronutrient composition of the diet may impact metabolic processes related to ectopic fat accumulation and IR. Interestingly, however, the metabolic phenotype of an individual may determine the response to a certain diet. Therefore, population-based nutritional interventions may not always lead to the most optimal (cardiometabolic) outcomes at the individual level, and differences in the metabolic phenotype may underlie conflicting findings related to IR and ectopic fat in dietary intervention studies. Detailed metabolic phenotyping will help to better understand the complex relationship between diet and metabolic regulation, and to optimize intervention outcomes. A subgroup-based approach that integrates, among others, tissue-specific IR, cardiometabolic parameters, anthropometrics, gut microbiota, age, sex, ethnicity, and psychological factors may thereby increase the efficacy of dietary interventions. Nevertheless, the implementation of more personalized nutrition may be complex, costly, and time consuming. Future studies are urgently warranted to obtain insight into a more personalized approach to nutritional interventions, taking into account the metabolic phenotype to ultimately improve insulin sensitivity and reduce the risk for cardiometabolic diseases
Modified Dark Matter in Galaxies and Galaxy Clusters
Modified Dark Matter (MDM) is a phenomenological model of dark matter,
inspired by gravitational thermodynamics, that naturally accounts for the
universal acceleration constant observed in galactic rotation curve data; a
critical acceleration related to the cosmological constant, , appears
as a phenomenological manifestation of MDM. We show that the resulting mass
profiles, which are sensitve to , are consistent with observations at
the galactic and galaxy cluster scales. Our results suggest that dark matter
mass profiles contain information about the cosmological constant in a
non-trivial way.Comment: To be published in the Proceedings of the Bahamas Advanced Study
Institute and Conferences (BASIC
Recommended from our members
The impact of dairy products in the development of type 2 diabetes: where does the evidence stand in 2019?
The prevalence of type 2 diabetes (T2D) has increased rapidly. Adopting a heathy diet is suggested as one of the effective behaviors to prevent or delay onset of T2D. Dairy consumption has been recommended as part of a healthy diet, but there remains uncertainty in both the scientific community and the public about the effect of different dairy products on T2D risk. In a recent workshop, the evidence on dairy products and T2D risk was presented and discussed by a group of experts. The main conclusions from the workshop are presented in this position paper and are as follows. 1) Available evidence from large prospective cohort studies and limited randomized controlled trials (RCTs) suggests that total dairy consumption has a neutral or moderately beneficial effect on T2D risk. 2) Increasing evidence from prospective cohort studies indicates that yogurt is most strongly associated with a lower T2D risk, but evidence from RCTs is scarce. 3) Fatty acids from dairy (medium-chain, odd, and very long-chain SFAs as well as trans-palmitoleic acid) are associated with lower T2D risk and improved metabolic health, but more research is needed on studies that explore cause and effect relations to exclude the possibility that the dairy fatty acids simply serve as markers of overall dairy consumption. 4) The food matrix can be a stronger determinant of health effects than SFA content. This review further identifies research gaps in the existing knowledge and highlights key research questions that need to be addressed to better understand the impact of dairy consumption on future T2D risk
One week of bed rest leads to substantial muscle atrophy and induces whole-body insulin resistance in the absence of skeletal muscle lipid accumulation
Short ( < 10 days) periods of muscle disuse, often necessary for recovery from illness or injury, lead to various negative health consequences. The current study investigated mechanisms underlying disuse-induced insulin resistance, taking into account muscle atrophy. Ten healthy, young males (age: 23 ± 1 years; BMI: 23.0 ± 0.9 kg · m−2) were subjected to 1 week of strict bed rest. Prior to and after bed rest, lean body mass (dual-energy X-ray absorptiometry) and quadriceps cross-sectional area (CSA; computed tomography) were assessed, and peak oxygen uptake (VO2peak) and leg strength were determined. Whole-body insulin sensitivity was measured using a hyperinsulinemic-euglycemic clamp. Additionally, muscle biopsies were collected to assess muscle lipid (fraction) content and various markers of mitochondrial and vascular content. Bed rest resulted in 1.4 ± 0.2 kg lean tissue loss and a 3.2 ± 0.9% decline in quadriceps CSA (both P < 0.01). VO2peak and one-repetition maximum declined by 6.4 ± 2.3 (P < 0.05) and 6.9 ± 1.4% (P < 0.01), respectively. Bed rest induced a 29 ± 5% decrease in whole-body insulin sensitivity (P < 0.01). This was accompanied by a decline in muscle oxidative capacity, without alterations in skeletal muscle lipid content or saturation level, markers of oxidative stress, or capillary density. In conclusion, 1 week of bed rest substantially reduces skeletal muscle mass and lowers whole-body insulin sensitivity, without affecting mechanisms implicated in high-fat diet–induced insulin resistance
Valsartan Improves Adipose Tissue Function in Humans with Impaired Glucose Metabolism: A Randomized Placebo-Controlled Double-Blind Trial
<div><h3>Background</h3><p>Blockade of the renin-angiotensin system (RAS) reduces the incidence of type 2 diabetes mellitus. In rodents, it has been demonstrated that RAS blockade improved adipose tissue (AT) function and glucose homeostasis. However, the effects of long-term RAS blockade on AT function have not been investigated in humans. Therefore, we examined whether 26-wks treatment with the angiotensin II type 1 receptor blocker valsartan affects AT function in humans with impaired glucose metabolism (IGM).</p> <h3>Methodology/Principal Findings</h3><p>We performed a randomized, double-blind, placebo-controlled parallel-group study, in which 38 subjects with IGM were treated with valsartan (VAL, 320 mg/d) or placebo (PLB) for 26 weeks. Before and after treatment, an abdominal subcutaneous AT biopsy was collected for measurement of adipocyte size and AT gene/protein expression of angiogenesis/capillarization, adipogenesis, lipolytic and inflammatory cell markers. Furthermore, we evaluated fasting and postprandial AT blood flow (ATBF) (<sup>133</sup>Xe wash-out), systemic inflammation and insulin sensitivity (hyperinsulinemic-euglycemic clamp). VAL treatment markedly reduced adipocyte size (<em>P</em><0.001), with a shift toward a higher proportion of small adipocytes. In addition, fasting (<em>P</em> = 0.043) and postprandial ATBF (<em>P</em> = 0.049) were increased, whereas gene expression of angiogenesis/capillarization, adipogenesis and macrophage infiltration markers in AT was significantly decreased after VAL compared with PLB treatment. Interestingly, the change in adipocyte size was associated with alterations in insulin sensitivity and reduced AT gene expression of macrophage infiltration markers. VAL did not alter plasma monocyte-chemoattractant protein (MCP)-1, TNF-α, adiponectin and leptin concentrations.</p> <h3>Conclusions/Significance</h3><p>26-wks VAL treatment markedly reduced abdominal subcutaneous adipocyte size and AT macrophage infiltration markers, and increased ATBF in IGM subjects. The VAL-induced decrease in adipocyte size was associated with reduced expression of macrophage infiltration markers in AT. Our findings suggest that interventions targeting the RAS may improve AT function, thereby contributing to a reduced risk of developing cardiovascular disease and type 2 diabetes.</p> <h3>Trial Registration</h3><p>Trialregister.nl NTR721 (ISRCTN Registry: ISRCTN<a href="http://www.controlled-trials.com/isrctn/pf/42786336">42786336</a>)</p> </div
Protocolled practice nurse-led care for children with asthma in primary care
__Introduction__ In children with asthma, daily symptoms and exacerbations have a significant impact on the quality of life of both children and parents. More effective use of asthma medication and, consequently, better asthma control is advocated, since both overtreatment and undertreatment are reported in primary care. Trials in adults suggest that asthma control is better when patients receive a regular medical review. Therefore, protocolled care by the general practitioner may also lead to better asthma control in children. However, such protocolled care by the general practitioner may be time consuming and less feasible. Therefore, this study aims to determine whether protocolled practice nurse-led asthma car
Adipose triglyceride lipase (ATGL) expression in human skeletal muscle is type I (oxidative) fiber specific
Accumulation of triacylglycerol (TAG) and lipid intermediates in skeletal muscle plays an important role in the etiology of insulin resistance and type 2 diabetes mellitus. Disturbances in skeletal muscle lipid turnover and lipolysis may contribute significantly to this. So far, knowledge on the regulation of muscle lipolysis is limited. Recently the identification of a new lipase was reported: adipose triglyceride lipase (ATGL). ATGL deficient animals show significant lipid accumulation in skeletal muscle, which may indicate that ATGL plays a pivotal role in skeletal muscle lipolysis. However, until now, it is still unknown whether ATGL protein is expressed in human skeletal muscle. Therefore, the aim of the present study was to investigate whether ATGL is expressed at the protein level in human skeletal muscle, and to examine whether its expression is fiber-type specific. To accomplish this, we established an imunohistochemical and immunofluorescent staining procedure to study ATGL protein expression in relation to fiber type in human vastus lateralis muscle of eight male subjects (BMI range: 21.0–34.5 kg/m2 and age: 38–59 years). In the present paper we report for the first time that ATGL protein is indeed expressed in human skeletal muscle. Moreover, ATGL is exclusively expressed in type I (oxidative) muscle fibers, suggesting a pivotal role for ATGL in intramuscular fatty acid handling, lipid storage and breakdown
The ABCD of obesity: An EASO position statement on a diagnostic term with clinical and scientific implications
Obesity is a frequent, serious, complex, relapsing, and chronic disease process that represents
a major public health problem. The coining of obesity as an adiposity-based chronic disease
(ABCD) is of particular relevance being in line with EASO’s proposal to improve the International Classification of Diseases ICD-11 diagnostic criteria for obesity based on three dimensions, namely etiology, degree of adiposity, and health risks. The body mass index as a unique
measurement of obesity does not reflect the whole complexity of the disease. Obesity complications are mainly determined by 2 pathological processes, i.e., physical forces (fat mass
disease) as well as endocrine and immune responses (sick fat disease), which are embedded in
a cultural and physical context leading to a specific ABCD stage
- …