309 research outputs found

    Scale-free vortex cascade emerging from random forcing in a strongly coupled system

    Get PDF
    The notions of self-organised criticality (SOC) and turbulence are traditionally considered to be applicable to disjoint classes of phenomena. Nevertheless, scale-free burst statistics is a feature shared by turbulent as well as self-organised critical dynamics. It has also been suggested that another shared feature is universal non-gaussian probability density functions (PDFs) of global fluctuations. Here, we elucidate the unifying aspects through analysis of data from a laboratory dusty plasma monolayer. We compare analysis of experimental data with simulations of a two-dimensional (2D) many-body system, of 2D fluid turbulence, and a 2D SOC model, all subject to random forcing at small scales. The scale-free vortex cascade is apparent from structure functions as well as spatio-temporal avalanche analysis, the latter giving similar results for the experimental and all model systems studied. The experiment exhibits global fluctuation statistics consistent with a non-gaussian universal PDF, but the model systems yield this result only in a restricted range of forcing conditions

    A Path Algorithm for Constrained Estimation

    Full text link
    Many least squares problems involve affine equality and inequality constraints. Although there are variety of methods for solving such problems, most statisticians find constrained estimation challenging. The current paper proposes a new path following algorithm for quadratic programming based on exact penalization. Similar penalties arise in l1l_1 regularization in model selection. Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to \infty, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. The exact path following method starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. Path following in lasso penalized regression, in contrast, starts with a large value of the penalty constant and works its way downward. In both settings, inspection of the entire solution path is revealing. Just as with the lasso and generalized lasso, it is possible to plot the effective degrees of freedom along the solution path. For a strictly convex quadratic program, the exact penalty algorithm can be framed entirely in terms of the sweep operator of regression analysis. A few well chosen examples illustrate the mechanics and potential of path following.Comment: 26 pages, 5 figure

    Maternal super-obesity (body mass index ≥ 50) and adverse pregnancy outcomes

    Get PDF
    Abstract Objective. To determine if pregnancy complications are increased in super-obese (a body mass index (BMI) of 50 or more) compared to other, less obese parturients. Design. Cross-sectional study. Setting and population. All 19,700 eligible women, including 425 (2.2%) super-obese women with singleton births between 1996 and 2007 delivering at a tertiary referral center, identified using a perinatal research database. Methods. Bivariate and trend analyses were used to assess the relation between super-obesity and various pregnancy complications compared to other well-established BMI categories. Adjusted odds ratios (ORs) were calculated using multivariable logistic regression techniques. Main outcome measures. Outcomes for adjusted and unadjusted analyses were small-for-gestational age (SGA) birth, large-for-gestational age (LGA) birth, preeclampsia, gestational diabetes mellitus (GDM), fetal death, preterm birth, placental abruption, cesarean delivery, and Apgar scores < 7. Results. Compared to all other obese and non-obese women, super-obese women had the highest rates of preeclampsia, GDM, LGA, and cesarean delivery (all p < 0.05 for trend test). Super-obesity was also associated with a 44% reduction in SGA compared to all other women (OR 0.55, 95% confidence interval (CI) 0.40–0.76) and a 25% reduction compared to other, less obese women (OR 0.75, 95% CI 0.54–1.03). Super-obesity was positively associated with LGA, GDM, preeclampsia, cesarean delivery, and a 5-minute Apgar score < 7 compared to all other women after controlling for important confounders. Conclusion. Super-obesity is associated with higher rates of pregnancy complications compared to women of all other BMI classes, including other obese women

    Altruism can proliferate through group/kin selection despite high random gene flow

    Get PDF
    The ways in which natural selection can allow the proliferation of cooperative behavior have long been seen as a central problem in evolutionary biology. Most of the literature has focused on interactions between pairs of individuals and on linear public goods games. This emphasis led to the conclusion that even modest levels of migration would pose a serious problem to the spread of altruism in group structured populations. Here we challenge this conclusion, by analyzing evolution in a framework which allows for complex group interactions and random migration among groups. We conclude that contingent forms of strong altruism can spread when rare under realistic group sizes and levels of migration. Our analysis combines group-centric and gene-centric perspectives, allows for arbitrary strength of selection, and leads to extensions of Hamilton's rule for the spread of altruistic alleles, applicable under broad conditions.Comment: 5 pages, 2 figures. Supplementary material with 50 pages and 26 figure

    Real-time gradient-domain painting

    Full text link

    A Full-Depth Amalgamated Parallel 3D Geometric Multigrid Solver for GPU Clusters

    Get PDF
    Numerical computations of incompressible flow equations with pressure-based algorithms necessitate the solution of an elliptic Poisson equation, for which multigrid methods are known to be very efficient. In our previous work we presented a dual-level (MPI-CUDA) parallel implementation of the Navier-Stokes equations to simulate buoyancy-driven incompressible fluid flows on GPU clusters with simple iterative methods while focusing on the scalability of the overall solver. In the present study we describe the implementation and performance of a multigrid method to solve the pressure Poisson equation within our MPI-CUDA parallel incompressible flow solver. Various design decisions and algorithmic choices for multigrid methods are explored in light of NVIDIA’s recent Fermi architecture. We discuss how unique aspects of an MPI-CUDA implementation for GPU clusters is related to the software choices made to implement the multigrid method. We propose a new coarse grid solution method of embedded multigrid with amalgamation and show that the parallel implementation retains the numerical efficiency of the multigrid method. Performance measurements on the NCSA Lincoln and TACC Longhorn clusters are presented for up to 64 GPUs

    HDQLIFE: Development and Assessment of Health-Related Quality of Life in Huntington Disease (HD)

    Get PDF
    PURPOSE: Huntington disease (HD) is a chronic, debilitating genetic disease that affects physical, emotional, cognitive, and social health. Existing patient-reported outcomes (PROs) of health-related quality of life (HRQOL) used in HD are neither comprehensive, nor do they adequately account for clinically meaningful changes in function. While new PROs examining HRQOL (i.e., Neuro-QoL-Quality of Life in Neurological Disorders and PROMIS-Patient-Reported Outcomes Measurement Information System) offer solutions to many of these shortcomings, they do not include HD-specific content, nor have they been validated in HD. HDQLIFE addresses this by validating 12 PROMIS/Neuro-QoL domains in individuals with HD and by using established PROMIS methodology to develop new, HD-specific content. METHODS: New item pools were developed using cognitive debriefing with individuals with HD, and expert, literacy, and translatability reviews. Existing item banks and new item pools were field tested in 536 individuals with prodromal, early-, or late-stage HD. RESULTS: Moderate to strong relationships between Neuro-QoL/PROMIS measures and generic self-report measures of HRQOL, and moderate relationships between Neuro-QoL/PROMIS and clinician-rated measures of similar constructs supported the validity of Neuro-QoL/PROMIS in individuals with HD. Exploratory and confirmatory factor analysis, item response theory, and differential item functioning analyses were utilized to develop new item banks for Chorea, Speech Difficulties, Swallowing Difficulties, and Concern with Death and Dying, with corresponding six-item short forms. A four-item short form was developed for Meaning and Purpose. CONCLUSIONS: HDQLIFE encompasses both validated Neuro-QoL/PROMIS measures, as well as five new scales in order to provide a comprehensive assessment of HRQOL in HD

    Changes in Gene Expression and Cellular Architecture in an Ovarian Cancer Progression Model

    Get PDF
    BACKGROUND: Ovarian cancer is the fifth leading cause of cancer deaths among women. Early stage disease often remains undetected due the lack of symptoms and reliable biomarkers. The identification of early genetic changes could provide insights into novel signaling pathways that may be exploited for early detection and treatment. METHODOLOGY/PRINCIPAL FINDINGS: Mouse ovarian surface epithelial (MOSE) cells were used to identify stage-dependent changes in gene expression levels and signal transduction pathways by mouse whole genome microarray analyses and gene ontology. These cells have undergone spontaneous transformation in cell culture and transitioned from non-tumorigenic to intermediate and aggressive, malignant phenotypes. Significantly changed genes were overrepresented in a number of pathways, most notably the cytoskeleton functional category. Concurrent with gene expression changes, the cytoskeletal architecture became progressively disorganized, resulting in aberrant expression or subcellular distribution of key cytoskeletal regulatory proteins (focal adhesion kinase, α-actinin, and vinculin). The cytoskeletal disorganization was accompanied by altered patterns of serine and tyrosine phosphorylation as well as changed expression and subcellular localization of integral signaling intermediates APC and PKCβII. CONCLUSIONS/SIGNIFICANCE: Our studies have identified genes that are aberrantly expressed during MOSE cell neoplastic progression. We show that early stage dysregulation of actin microfilaments is followed by progressive disorganization of microtubules and intermediate filaments at later stages. These stage-specific, step-wise changes provide further insights into the time and spatial sequence of events that lead to the fully transformed state since these changes are also observed in aggressive human ovarian cancer cell lines independent of their histological type. Moreover, our studies support a link between aberrant cytoskeleton organization and regulation of important downstream signaling events that may be involved in cancer progression. Thus, our MOSE-derived cell model represents a unique model for in depth mechanistic studies of ovarian cancer progression

    Impact of Simian Immunodeficiency Virus Infection on Chimpanzee Population Dynamics

    Get PDF
    Like human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus of chimpanzees (SIVcpz) can cause CD4+ T cell loss and premature death. Here, we used molecular surveillance tools and mathematical modeling to estimate the impact of SIVcpz infection on chimpanzee population dynamics. Habituated (Mitumba and Kasekela) and non-habituated (Kalande) chimpanzees were studied in Gombe National Park, Tanzania. Ape population sizes were determined from demographic records (Mitumba and Kasekela) or individual sightings and genotyping (Kalande), while SIVcpz prevalence rates were monitored using non-invasive methods. Between 2002–2009, the Mitumba and Kasekela communities experienced mean annual growth rates of 1.9% and 2.4%, respectively, while Kalande chimpanzees suffered a significant decline, with a mean growth rate of −6.5% to −7.4%, depending on population estimates. A rapid decline in Kalande was first noted in the 1990s and originally attributed to poaching and reduced food sources. However, between 2002–2009, we found a mean SIVcpz prevalence in Kalande of 46.1%, which was almost four times higher than the prevalence in Mitumba (12.7%) and Kasekela (12.1%). To explore whether SIVcpz contributed to the Kalande decline, we used empirically determined SIVcpz transmission probabilities as well as chimpanzee mortality, mating and migration data to model the effect of viral pathogenicity on chimpanzee population growth. Deterministic calculations indicated that a prevalence of greater than 3.4% would result in negative growth and eventual population extinction, even using conservative mortality estimates. However, stochastic models revealed that in representative populations, SIVcpz, and not its host species, frequently went extinct. High SIVcpz transmission probability and excess mortality reduced population persistence, while intercommunity migration often rescued infected communities, even when immigrating females had a chance of being SIVcpz infected. Together, these results suggest that the decline of the Kalande community was caused, at least in part, by high levels of SIVcpz infection. However, population extinction is not an inevitable consequence of SIVcpz infection, but depends on additional variables, such as migration, that promote survival. These findings are consistent with the uneven distribution of SIVcpz throughout central Africa and explain how chimpanzees in Gombe and elsewhere can be at equipoise with this pathogen

    Deviant Peer Affiliation and Antisocial Behavior: Interaction with Monoamine Oxidase A (MAOA) Genotype

    Get PDF
    Although genetic and environmental factors are separately implicated in the development of antisocial behavior (ASB), interactive models have emerged relatively recently, particularly those incorporating molecular genetic data. Using a large sample of male Caucasian adolescents and young adults from the National Longitudinal Study of Adolescent Health (Add Health), the association of deviant peer affiliation, the 30-base pair variable number tandem repeat polymorphism in promoter region of the monoamine oxidase-A (MAOA) gene, and their interaction, with antisocial behavior (ASB) was investigated. Weighted analyses accounting for over-sampling and clustering within schools as well as controlling for age and wave suggested that deviant peer affiliation and MAOA genotype were each significantly associated with levels of overt ASB across a 6-year period. Only deviant peer affiliation was significantly related to covert ASB, however. Additionally, there was evidence suggestive of a gene-environment interaction (G × E) where the influence of deviant peer affiliation on overt ASB was significantly stronger among individuals with the high-activity MAOA genotype than the low-activity genotype. MAOA was not significantly associated with deviant peer affiliation, thus strengthening the inference of G × E rather than gene-environment correlation (rGE). Different forms of gene-environment interplay and implications for future research on ASB are discussed
    corecore