177 research outputs found

    Modeling within a Digital Watershed Context

    Get PDF
    2008 S.C. Water Resources Conference - Addressing Water Challenges Facing the State and Regio

    Synthesizing Datasets to Estimate Terrestrial Water Storage Trends in South Carolina from 1998-2007

    Get PDF
    2010 S.C. Water Resources Conference - Science and Policy Challenges for a Sustainable Futur

    Applying Drought Analysis in the Variable Infiltration Capacity (VIC) Model for South Carolina

    Get PDF
    2012 S.C. Water Resources Conference - Exploring Opportunities for Collaborative Water Research, Policy and Managemen

    Relation between Peak Power Output in Sprint Cycling and Maximum Voluntary Isometric Torque Production

    Get PDF
    From a cycling paradigm, little has been done to understand the relationships between maximal isometric strength of different single joint lower body muscle groups and their relation with, and ability to predict PPO and how they compare to an isometric cycling specific task. The aim of this study was to establish relationships between maximal voluntary torque production from isometric single-joint and cycling specific tasks and assess their ability to predict PPO. Twenty male trained cyclists participated in this study. Peak torque was measured by performing maximum voluntary contractions (MVC) of knee extensors, knee flexors, dorsi flexors and hip extensors whilst instrumented cranks measured isometric peak torque from MVC when participants were in their cycling specific position (ISOCYC). A stepwise regression showed that peak torque of the knee extensors was the only significant predictor of PPO when using SJD and accounted for 47% of the variance. However, when compared to ISOCYC, the only significant predictor of PPO was ISOCYC, which accounted for 77% of the variance. This suggests that peak torque of the knee extensors was the best single-joint predictor of PPO in sprint cycling. Furthermore, a stronger prediction can be made from a task specific isometric task

    Dynamic Modeling of Inland Flooding and Storm Surge on Coastal Cities Under Climate Change Scenarios: Transportation Infrastructure Impacts in Norfolk, Virginia USA as a Case Study

    Get PDF
    Low-lying coastal cities across the world are vulnerable to the combined impact of rainfall and storm tide. However, existing approaches lack the ability to model the combined effect of these flood mechanisms, especially under climate change and sea level rise (SLR). Thus, to increase flood resilience of coastal cities, modeling techniques to improve the understanding and prediction of the combined effect of these flood hazards are critical. To address this need, this study presents a modeling system for assessing the combined flood impact on coastal cities under selected future climate scenarios that leverages ocean modeling with land surface modeling capable of resolving urban drainage infrastructure within the city. The modeling approach is demonstrated in quantifying the impact of possible future climate scenarios on transportation infrastructure within Norfolk, Virginia, USA. A series of combined storm events are modeled for current (2020) and projected future (2070) climate scenarios. The results show that pluvial flooding causes a larger interruption to the transportation network compared to tidal flooding under current climate conditions. By 2070, however, tidal flooding will be the dominant flooding mechanism with even nuisance flooding expected to happen daily due to SLR. In 2070, nuisance flooding is expected to cause a 4.6% total link close time (TLC), which is more than two times that of a 50-year storm surge (1.8% TLC) in 2020. The coupled flood model was compared with a widely used but physically simplistic bathtub method to assess the difference resulting from the more complex modeling presented in this study. The results show that the bathtub method overestimated the flooded area near the shoreline by 9.5% and 3.1% for a 10-year storm surge event in 2020 and 2070, respectively, but underestimated the flooded area in the inland region by 9.0% and 4.0% for the same events. The findings demonstrate the benefit of sophisticated modeling methods compared to more simplistic bathtub approaches, in climate adaptive planning and policy in coastal communities

    Reliabilty of traditional and task specific reference tasks to assess peak muscle activation during two different sprint cycling tests

    Get PDF
    © 2019 Elsevier Ltd Neuromuscular activation is considered an important determinant sprint cycling performance but requires reliable EMG amplitude measurements to facilitate sensitive assessments. The reliability of EMG measurements during sprint cycling may depend on the sprint cycling test undertaken (isovelocity or isoinertial accelerating), the reference tasks used for normalisation (isometric MVCs of a series of single muscle groups [ISO-SINGJT] or isometric cycling MVCs [ISO-CYC]), and the efficacy of the normalisation. This study aimed to compare the magnitude and between-session reliability of peak muscle activation (peak rmsEMG) during: isovelocity and isoinerital sprint cycling tests; ISO-SINGJT and ISO-CYC reference tasks; and absolute and normalised EMG during the sprint cycling tests. EMG amplitude was measured over six major muscle groups on both legs and all measurements were made over two sessions in a randomised counterbalanced design. Peak rmsEMG was assessed during both ISO-SINGJT and ISO-CYC MVCs and then during mechanical peak power output (PPO) during isovelocity (120 RPM) and isoinerital acceleration (0 to >150 RPM) sprint tests. Absolute peak rmsEMG and for the sprint tests normalised EMG values were determined, and coefficient of variation and intra-class correlation coefficients used to assess reliability. Peak rmsEMG at PPO during both sprint cycling tests was similar for the six muscle groups measured. Peak rmsEMG was higher during ISO-SINGJT than ISO-CYC for for 3 of the 6 muscle groups, but all muscle groups exhibited similar reliability for both reference tasks. Neither reference task improved the between-session reliability for either sprint test. This data highlights reservations in the use of isometric reference tasks to ascertain changes in peak muscle activation over time in during sprint cycling assessments

    Cycling‐specific isometric resistance training improves peak power output in elite sprint cyclists

    Get PDF
    INTRODUCTION: This study aimed to assess the efficacy of a six-week cycling-specific, isometric resistance training programme on peak power output (PPO) in elite cyclists. METHODS: Twenty-four elite track sprint cyclists were allocated to EXP (n=13, PPO, 1537 ± 307 W) and CON (n=11, PPO, 1541 ± 389 W) groups. All participants completed a six-week training programme; training content was identical except participants in the EXP group replaced their usual compound lower body resistance training exercise with a cycling-specific, isometric resistance training stimulus. Cycling PPO, knee extensor and cycling-specific isometric strength, and measures of muscle architecture were assessed pre- and post-training. RESULTS: In EXP, absolute and relative PPO increased (46 ± 62 W and 0.8 ± 0.7 W⋅kg-1 , p < 0.05), and the change in relative PPO was different to CON (-0.1 ± 1.0 W⋅kg-1 , group × time interaction p = 0.02). The increase in PPO was concurrent with an increase in extrapolated maximal torque in EXP (7.1 ± 6.5 N⋅m, p = 0.007), but the effect was not different from the change in CON (2.4 ± 9.7 N⋅m, group × time p = 0.14). Cycling-specific isometric strength also increased more in EXP (group × time p = 0.002). There were no other between-group differences in response to training. CONCLUSION: A six-week novel, cycling-specific isometric resistance training period improved PPO in a group of elite sprint cyclists by 3-4%. These data support the use of a cycling-specific isometric resistance training stimulus in the preparation programmes of world-class cyclists

    A Resource Centric Approach For Advancing Collaboration Through Hydrologic Data And Model Sharing

    Full text link
    HydroShare is an online, collaborative system being developed for open sharing of hydrologic data and models. The goal of HydroShare is to enable scientists to easily discover and access hydrologic data and models, retrieve them to their desktop or perform analyses in a distributed computing environment that may include grid, cloud or high performance computing model instances as necessary. Scientists may also publish outcomes (data, results or models) into HydroShare, using the system as a collaboration platform for sharing data, models and analyses. HydroShare is expanding the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated, creating new capability to share models and model components, and taking advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. One of the fundamental concepts in HydroShare is that of a Resource. All content is represented using a Resource Data Model that separates system and science metadata and has elements common to all resources as well as elements specific to the types of resources HydroShare will support. These will include different data types used in the hydrology community and models and workflows that require metadata on execution functionality. The HydroShare web interface and social media functions are being developed using the Drupal content management system. A geospatial visualization and analysis component enables searching, visualizing, and analyzing geographic datasets. The integrated Rule-Oriented Data System (iRODS) is being used to manage federated data content and perform rule-based background actions on data and model resources, including parsing to generate metadata catalog information and the execution of models and workflows. This presentation will introduce the HydroShare functionality developed to date, describe key elements of the Resource Data Model and outline the roadmap for future development
    • 

    corecore