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ABSTRACT 25	

From a cycling paradigm, little has been done to understand the relationships between maximal 26	

isometric strength of different single joint lower body muscle groups and their relation with, and 27	

ability to predict PPO and how they compare to an isometric cycling specific task.  The aim of this 28	

study was to establish relationships between maximal voluntary torque production from isometric 29	

single-joint and cycling specific tasks and assess their ability to predict PPO. Twenty male trained 30	

cyclists participated in this study. Peak torque was measured by performing maximum voluntary 31	

contractions (MVC) of knee extensors, knee flexors, dorsi flexors and hip extensors whilst 32	

instrumented cranks measured isometric peak torque from MVC when participants were in their 33	

cycling specific position (ISOCYC). A stepwise regression showed that peak torque of the knee 34	

extensors was the only significant predictor of PPO when using SJD and accounted for 47% of the 35	

variance. However, when compared to ISOCYC, the only significant predictor of PPO was ISOCYC, 36	

which accounted for 77% of the variance.  This suggests that peak torque of the knee extensors was 37	

the best single-joint predictor of PPO in sprint cycling. Furthermore, a stronger prediction can be 38	

made from a task specific isometric task. 39	

  40	
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INTRODUCTION  41	

First described by Hill in 1938, mechanical power produced by muscle is the consequence of force 42	

production and shortening velocity (Hill, 1938). These two variables share a hyperbolic, inverse 43	

relationship with peak concentric mechanical power being achieved at approximately a third of 44	

maximal shortening velocity and maximum concentric force (Edman, 1979). From an applied 45	

perspective, maximal power output acts as one of the main physiological determinants and predictors 46	

of performance in sports such as running (Bundle and Weyand, 2012; Weyand et al., 2006), rowing 47	

(Ingham et al., 2002) and jumping (Ferretti et al., 1994; Grassi et al., 1991). Similarly, from a  sprint 48	

cycling perspective, mechanical peak power output (PPO) at the crank level acts as a primary 49	

physiological determinant of performance. (Dorel et al., 2005; Martin et al., 2006, 2007) 50	

Torque (cycling equivalent of force) and cadence (cycling equivalent of shortening velocity) are 51	

inversely related, however, unlike the descriptions of Hill, they are linearly, not hyperbolically related 52	

(Driss et al., 2002; Driss and Vandewalle, 2013; Gardner et al., 2007; Jaafar et al., 2015; Martin et al., 53	

1997). As such, PPO  is achieved at approximately half of the maximum extrapolated torque (Tmax) 54	

and maximum extrapolated cadence (Cmax) (Dorel et al., 2005; Gardner et al., 2007), which is reported 55	

to occur ~120 rpm (Samozino et al., 2007); however, conceptually an increase in Tmax and/or Cmax 56	

could result in an increased PPO, and by inference, performance.  57	

To date,  evidence to suggest what physiologically underpins PPO and sprint cycling performance is 58	

limited to thigh volume (Dorel et al., 2005).  Other studies have used non-sporting populations to 59	

significantly correlate fat free mass  (Duché et al., 2002) and isometric quadriceps strength (Driss et 60	

al., 2002). Despite Driss et al. (2002) and colleagues reporting strong correlations between maximal 61	

voluntary contractions (MVCs) during isometric knee extension in relation to both Tmax (r = 0.73) and 62	

PPO (r = 0.75) in sprint cycling, there seems to be a plethora of data associating isometric MVCs with 63	

dynamic performance providing varied results. Typically correlations range between 0.3 and 0.6, 64	

whilst perhaps unsurprisingly, much stronger relationships have been observed (r = 0.76 – 0.97) when 65	

the isometric MVC has a great degree of specificity to the dynamic performance task (for review see 66	

(Wilson and Murphy, 1996)). Typically, non-specific tasks that isolate single-joint muscle groups 67	
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have been used to determine performance, but these are of limited use given the performance action is 68	

often very different to the surrogate measure, therefore a task specific measure would be conceptually 69	

better (Wilson and Murphy, 1996). This is exemplified in using maximum isometric force in a bench 70	

press test to predict performance in shotput throwers where a poor relationship was observed (r = 71	

0.22) as the isometric task lacked specificity to the ‘dynamic’ performance measure. Notwithstanding, 72	

maximum isometric force was strongly correlated with (dynamic) bench press 1RM (r = 0.78) due to 73	

the performance and isometric task being very similar (Murphy et al., 1994), which further illustrates 74	

the issue of task specificity.  75	

The limitation of the study carried out by Driss et al. (2002) was that it was limited to the knee 76	

extensors only, whereas sprint cycling is a compound movement and uses all major muscle groups in 77	

the lower limbs to produce impulse (Dorel et al., 2012). Consequently, it is important to investigate, 78	

and therefore gain, greater understandings of whether other muscle groups (beyond knee extensors) 79	

contribute to PPO and sprint cycling performance.  80	

The implications of this study can be used to provide athletes, coaches and practitioners an evidence-81	

based strength testing battery which can be used to monitor and predict sprint cycling performance. 82	

Further, investigating a cycling specific isometric task will in comparison to single joint will give a 83	

better idea to see if non-specific cycling strength vs. cycling specific cycling strength in relation to 84	

performance.   85	

The aims of this study were two-fold. Firstly, we examined the yet untested relationship of maximal 86	

strength of the major lower body cycling muscles using isometric single-joint dynamometry and 87	

whether any can be used to predict PPO. Secondly, we assessed whether an isometric cycling-specific 88	

task would be a better predictor of sprint cycling performance than isolated isometric single-joint 89	

muscle group tasks.  90	

METHODS  91	

Participants  92	
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Twenty male cyclists volunteered to take part in the study (mean ± SD age, 27 ± 5 yr; stature, 183.1 ± 93	

8.4 cm; mass, 84.5 ± 11.1 kg). Cycling training experience and rider category varied throughout the 94	

participants, but all were engaged between 5-24 h of training per week and were regularly competing 95	

in various disciplines from sprint track to road endurance cycling from British Cycling’s ‘Category 3’ 96	

up to the ‘Elite category’ national level riders. The cyclists were free from injury as assessed by a 97	

health screening questionnaire.  Following institutional ethics committee approval, cyclists provided 98	

written, informed consent prior to any experimental procedures.  99	

Study Overview 100	

Participants attended two familiarisation sessions prior to the two experimental sessions. All lab 101	

sessions were identical whereby participants completed the same protocol on each lab vist. Lab visits 102	

were separated by at least 1 and not more than 7 d. Cyclists were asked to report to the laboratory in a 103	

hydrated state and to avoid caffeine and food for 3 h prior to testing and to avoid intense exercise in 104	

the 24 h before each session. Firstly, the participants performed isolated, isometric, single-joint MVCs 105	

with four different muscle groups (knee extensors, knee flexors, hip extensors and plantar flexion) on 106	

a dynamometer. Subsequently, after 15 minutes of passive rest, participants performed a series of 107	

cycling-specific, multi-joint isometric MVCs on an instrumented, custom made cycling ergometer. 108	

Lastly, a maximum isokinetic power-cadence protocol was performed to measure PPO.  109	

Isometric Dynamometry  110	

Each laboratory session started with participants performing isometric MVCs on a calibrated 111	

dynamometer (Biodex, System 4 Pro, New York, USA). Participants performed MVCs on four 112	

different muscle groups on each leg (always starting on the right side) before proceeding to the next 113	

muscle group, in the following order: plantar extensors (calf), hip extensors (gluteal), knee extensors 114	

(quadriceps) and knee flexors (hamstrings). 115	

After five, 3 s sub-maximal contractions of progressing intensity, participants performed three, 3 s 116	

MVCs which were separated by 60 s of rest. The subjects were asked to maximally contract “as hard 117	

as possible” to ensure that maximal torque was achieved within the 3s. The isometric joint angles 118	
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were fixed at what has previously been reported as optimal torque producing angles: hip (45o), knee 119	

(70o in extension and 50o in flexion) and ankle (0o) (Dorel et al., 2012; Ericson, 1986; Rouffet and 120	

Hautier, 2008). Specific dynamometer positions were recorded for each participant during the first 121	

familiarisation session and replicated thereafter. Between each set of MVCs (between each leg and 122	

muscle group), participants were given 5 minutes passive rest.  123	

Cycling Specific Isometric Protocol (ISOCYC) 124	

Participants performed the multi-joint cycling specific isometric (ISOCYC) MVCs on a custom made 125	

cycling ergometer (BAE Systems, London, UK), which was modified to allow for isometric efforts by 126	

attaching a clamp to the flywheel. The ergometer was set up to replicate the participants’ cycling 127	

position whilst using their own cycling shoes and pedals. The participants performed the ISOCYC 128	

MVCs in the saddle and were instructed to remain seated throughout. To further ensure that they 129	

remained seated, they were strapped into the saddle using a webbing seatbelt, secured and tightened 130	

around their waist and ergometer whilst their forearms were positioned on the crossbar of the 131	

handlebars. The drive-side (right) crank arm was positioned at 90o from top, dead centre (TDC) using 132	

an inclinometer. As with the dynamometer, the participants were given three sub-maximal efforts at 133	

what they perceived at 60%, 70% and 80% of their perceived MVC. Prior to performing the ISOCYC 134	

efforts, participants were reminded to ‘try to pedal the cranks forward as hard as possible using both 135	

legs’ (i.e., the right leg pushing down and the left leg pulling up, simultaneously). Following a 3 s 136	

countdown, participants performed a 3 s MVC, which was performed 3 times with 60 s rests in 137	

between efforts. After 5 minutes passive rest, the process was then repeated with the only difference 138	

being the drive side (right) and non-drive side (left) crank positions being reversed. The ergometer 139	

was fitted with instrumented cranks (170 mm) that following calibration, measured cumulative, as 140	

well as individual, right and left crank arm torque production (Factor Cranks, BF1 Systems, Diss, UK) 141	

at a sampling rate of 200 Hz.  142	

Isokinetic Peak Power Output Protocol 143	
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Prior to performing the maximal isokinetic efforts to determine PPO, participants undertook a 144	

standard 10-minute warm-up of submaximal cycling at a self-selected intensity (between 100-150 W) 145	

and cadence (between 80-90 RPM). For the maximal isokinetic efforts, participants performed 4 s 146	

sprints at 60, 110, 120, 130 and 180 RPM. Cadences were randomised for all laboratory sessions 147	

(www.random.org). Prior to each effort, the motor was brought up to the desired velocity and 148	

participants were instructed to pedal below the pre-set cadence and reminded to ‘attack the effort as 149	

fast and as hard as possible’ once the effort began. The investigator gave a 3 s countdown and the 150	

participants performed a 4 s maximal effort against the set cadence. A period of 3 minutes passive rest 151	

was given between each isokinetic sprint. As with the ISOCYC, participants used their own cycling 152	

shoes and pedals and performed the PPO protocol on ergometer, which was identically set-up to their 153	

racing positions. All efforts were performed in the saddle with each cyclist using the ‘drop’ 154	

handlebars.  155	

Data Processing  156	

Torque from the dynamometer was sampled (2,000 Hz) and fed directly into a data acquisition system 157	

(Micro 1401, CED, Cambridge, United Kingdom) and the accompanying PC utilizing Spike2 158	

software (CED, Cambridge, United Kingdom). Of the three MVCs, the highest peak torque value 159	

(from the isometric dynamometry) for each individual muscle group was recorded. As the 160	

performance task (sprint cycling) uses both limbs, peak torque values were averaged for both right 161	

and left muscle groups for each experimental session and then averaged again over both experimental 162	

sessions. Likewise, peak torque values from right and left cranks in all ISOCYC efforts were 163	

extracted and averaged for both sessions and then averaged between sessions.  164	

For both ISOCYC and PPO efforts, data was being recorded wirelessly on to an electronic measuring 165	

system (BF1 Systems, Diss, United Kingdom). Subsequent to each lab session, the raw data was 166	

exported into Spike2, where power and cadence was calculated using custom made scripts. For the 167	

isokinetic PPO sprints, the first three full revolutions (from TDC to TDC) of each effort at the pre-168	

determined cadence were recorded and analysed; the revolution with the highest mean torque (and 169	
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therefore, power) was used. For each participant, the revolution analysed for each cadence was 170	

averaged between sessions. Then, the five power outputs at each pre-determined cadences, a quadratic 171	

regression power-cadence relationship was plotted and PPO was interpolated at the apex of the curve.  172	

Statistical Analysis  173	

The relationship between PPO and peak torques for different muscle groups in isometric 174	

dynamometry MVCs and the ISOCYC were calculated by using a Pearson’s product moment 175	

correlation. Pearson’s correlation coefficients were defined as previously described by Buchheit and 176	

colleagues: trivial (0.0), small (0.1), moderate (0.3), strong (0.5), very strong (0.7), nearly perfect 177	

(0.9), and perfect (1.0) (Buchheit et al., 2010). Any correlation greater than r = 0.50 was used in a 178	

step-wise linear regression to predict PPO from peak torque values from isometric dynamometry of 179	

relevant muscle groups. If any were seen as significant predictors, they were placed into another step-180	

wise linear regression against ISOCYC to determine whether a more task specific or a non-skilled 181	

task best predicts PPO.  All statistics was performed on SPSS (IBM Corp., Armonk, N.Y., USA) and 182	

reported as mean (SD) unless otherwise stated.  183	

RESULTS  184	

Average mechanical PPO was measured at 1197 ± 215 W (Figure 1). In relation to PPO, maximum 185	

isometric strength of the knee extensors showed a very strong relationship (r = 0.71; p < 0.01). Strong 186	

relationships were also observed between the knee flexors (r = 0.53; p = 0.02), the hip extensors (r = 187	

0.56; p = 0.01) and PPO with a trivial, non-significant relationship between ankle extensors and PPO 188	

(r = −0.03; p = 0.89). The relationship between PPO and ISOCYC (Figure 2) had a very strong 189	

relationship (r = 0.87; p < 0.01).  190	

All isometric dynamometry muscle groups that were assessed (apart from the plantar extensors) were 191	

entered into a step-wise regression model and significantly predicted PPO (F(3, 19) = 16.06, p = 0.001, 192	

R2 = 0.47). However, only peak torque from isometric knee extension contributed significantly to the 193	

prediction, which accounted for 47% of the variation in PPO (p = 0.001). Knee flexion (p = 0.460) 194	

and hip extension (p = 0.507) did not contribute meaningfully to the prediction.  Accordingly, peak 195	



9	
	

torques of knee extensors and ISOCYC were put into a subsequent step-wise regression model and 196	

PPO was significantly predicted (F(2, 19) = 23.55, p < 0.001, R2 = 0.77). Only peak isometric torque 197	

from ISOCYC added statistical significance to the prediction, which accounted for 77% of the 198	

variation (p = 0.001). Knee extension did not contribute significantly to the relationship (p = 0.389).  199	

DISCUSSION  200	

The purpose of this study was two-fold. Firstly, to establish whether maximal torque produced from 201	

single joint isometric dynamometry can significantly predict PPO in sprint cycling. Secondly, how 202	

single joint isometric dynamometry compares to a cycling specific isometric task in predicting PPO. 203	

With respect to the first aim,  of all the major lower body muscle groups that were assessed using 204	

isometric single joint MVC, peak torque produced by the knee extensors was shown to be a 205	

significant predictor of PPO. However, with respect to the second aim, when peak torque from the 206	

knee extensors was compared to peak torque produced by ISOCYC, it was the cycling specific 207	

measure of maximal strength that was shown to be the only significant predictor of PPO.  208	

With ISOCYC being the  best predictor of PPO and therefore, the potential to predict sprint cycling 209	

performance,  it builds on the growing body of evidence that task specific isometric contractions are a 210	

better predictor of performance than non-skilled, single-joint tasks, like isometric dynamometry. The 211	

ISOCYC is easy to perform, is a more familiar task to trained cyclists and in comparison to 212	

dynamometry is significantly cheaper. Furthermore, should the instrumented cranks be on their own 213	

bike, it can be performed almost anywhere. The disadvantage of using an isometric compound 214	

movement, like ISOCYC, to an isolated single joint MVC, is that is does not provide sufficient 215	

information to ascertain which muscle groups are responsible for any changes that may be observed.  216	

Previously, instrumented cranks have been able to provide power-cadence (and torque-cadence) 217	

relationships as an accurate means to model cycling performance in the laboratory which is reflected 218	

in field performances (Gardner et al., 2007). However, though this may be thought of as a more 219	

ecologically valid task, it involves a large technical/biomechanical component that makes it hard to 220	

quantify true physiological changes in strength of muscle group(s). Isometric tasks (single-joint 221	
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dynamometry (in this case, knee extensor assessment) can provide valuable information of strength 222	

changes in targeted muscle groups. This means that it can act as an abstract measure of strength that is 223	

far removed from the task, can be monitored by coaches and practitioners to provide information on 224	

meaningful changes in physiological strength relative to a key performance measure as well as 225	

provide valuable feedback on the efficacy of previous training or indeed inform the prescription and 226	

monitoring of future training programming. 227	

The findings from the single joint dynamometry concur with previous work (Driss et al., 2002) that 228	

showed a similar, strong relationship between isometric MVC of the knee extensor and PPO. The hip 229	

extensors and knee flexors displayed large and significant relationships to PPO and but they did not 230	

significantly add to the regression model that already included the knee extensors. No relationship 231	

between maximal plantar flexor strength with PPO was observed which is contrary to the high  232	

muscle activation levels of the plantar flexors during maximal sprint cycling (Dorel et al., 2012). A 233	

possible explanation for this finding could either that plantar flexor strength may be more cycling/task 234	

specific rather than a general, non-specific, abstract strength measure and/or may provide some 235	

evidence that the planar flexors are involved in the transfer of mechanical energy from the proximal 236	

muscles to the crank (Raasch et al., 1997). 237	

A plausible suggestion for why knee extensors are the only significant single joint predictors of PPO 238	

could be because the superficial mono-articular muscles of the quadriceps (i.e. VM and VL) are 239	

maximally activated when peak torque is achieved around the crank cycle (Dorel et al., 2012). Thus, 240	

stronger knee extensors are critical for high instantaneous torque and therefore, PPO. Nevertheless, 241	

irrespective of why the knee extensors are the best predictor of PPO, peak torque from ISOCYC 242	

MVCs provides a task specific, less time consuming, cheaper method to predict PPO that is easy to 243	

administer and can be used by athletes, coaches and practitioners to monitor changes in PPO and 244	

therefore make some inference about performance.  245	

There are limitations to this study that should be mentioned. Firstly, it is recommended that at least 50 246	

participants are used when employing a multiple linear regression in comparison to the 20 used in this 247	
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study (Green, 1991). In addition, not all the major muscle groups were assessed. Two major lower 248	

body muscle groups: hip flexors and dorsiflexors were not assessed which have been shown to be 249	

maximally active during sprint cycling (Dorel et al., 2012) and no upper body measures which have 250	

been shown to contribute to high intensity cycling even though it is sub-maximal (Grant et al., 2015).    251	

In conclusion, of all the major lower body muscle groups, peak torque in the knee extensors from 252	

isometric dynamometry was the best predictor of peak power output in sprint cycling. Moreover, our 253	

data show that a stronger prediction of sprint cycling performance can be made from a measure of 254	

maximal torque that is performed in an isometric cycling specific task to indirectly assess PPO. This 255	

provides a cheaper, easier and more applicable method for athletes, coaches and practitioners to 256	

monitor surrogate measures of sprint cycling performance.  257	
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Figue 1. 333	

Figure 1: Power-cadence relationship of second order polynomial was formed after performing 334	

maximal sprints at 60, 110, 120, 130 and 180 RPM; R2 = 0.996; y = -0.081x2 + 19.35x - 13.96); 335	

Mechanical peak power output (PPO) was interpolated and measured at 1108 ± 215 W.   336	

 337	

 338	
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Figure 2 340	

Figure 2: Relationship between (a) peak isometric strength of knee extensors and mechanical peak 341	

power output (PPO) (b) peak isometric strength of hip extensors and PPO (c) peak isometric strength 342	

of knee flexors and PPO (d) peak isometric strength of ankle extensors and PPO (e) peak isometric 343	

cycling specific torque and PPO. 344	
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