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    ABSTRACT. The objective of this research is to apply 
the Variable Infiltration Capacity (VIC) model for 
drought analysis in South Carolina. The VIC model is a 
macro-scale hydrologic model that solves both water and 
energy balance equations for the land surface portion of 
the hydrologic cycle.  The model has been successfully 
applied to a wide range of river basins (Cherkauer et al., 
1999, Maurer et al., 2001a, 2001b, 2002) to simulate 
complex interactions of water, energy and vegetation 
using soil properties and meteorological datasets for grid-
based discretization of the land surface (Liang et al., 
1994, 1996).  The grid-based analysis also includes sub-
grid variability of the land surface vegetation classes and 
soil moisture storage capacity.  Using these features, VIC 
provides a means to estimate hydrologic variables that 
are difficult to quantify (i.e. soil moisture, 
evapotranspiration) at relatively high spatial and 
temporal resolution over larger regions. 
        The VIC model was applied to simulate the 
hydrologic conditions in South Carolina with spatial 
resolution of 1/8th of a degree (Figure 1).  The time 
period was selected from 1998 to 2007 to simulate 
monthly hydrologic variables during and following the 
state-wide drought of 1998-2002.  Three soil layers were 
selected for the model as part of the calibration process: 0 
to 10 cm for the top layer, 10 to 40 cm for the middle 
layer, and 40 to 100 cm for the deep layer.  The VIC 
model requires meteorological drivers (precipitation, 
maximum, minimum temperature and wind speed), as 
well as vegetation and soil properties to simulate 
hydrologic conditions.  These meteorological datasets 
were collected from the National Climatic Data Center 
(NCDC) and the National Centers for Environmental 
Prediction in partnership with the National Center for 
Atmospheric Research (NCEP/NCAR) Reanalysis 
model.  The station observed precipitation, maximum 
temperature, and minimum temperature datasets from 
NCDC were transformed into gridded input datasets for 
VIC using SYMAP interpolation algorithm (Shepard, 
1984).  The wind speed datasets were also converted into 
gridded input datasets for the modeling domain from 
NCEP/NCAR.  The soil and vegetation datasets were  

 
Figure 1: Map of the study area showing major river 
basins Yadkin-Pee Dee basin, Catawba-Santee basin, 
Ashepoo-Combahee-Edisto (ACE) basin in South 
Carolina including groundwater level observations. 
 
 
both collected from the Land Data Assimilation Systems 
(LDAS) at a spatial resolution of 1/8th degree. The VIC 
model was calibrated using streamflow observations 
from the stream gaging station at Broad River in   the 
Catawba-Santee basin (Figure 2).  The calibration was 
carried out for the period of 1998-2002 considering seven 
parameters: variable infiltration curve (b), maximum 
base flow (Dsmax), fraction of base flow where base flow 
occurs (Ds), fraction of maximum soil moisture content 
above which nonlinear base flow occurs (Ws), mid (d2) 
and deep (d3) soil layer depth, and minimum stomatal 
resistance (r0).  The Nash-Sutcliffe Efficiency (NSE) 
index was estimated to select the best combination of 
parameter values.  Using these calibrated parameters, 
comparison of simulated and observed streamflow 
provided a NSE value of 0.70 for the period 1998-2002.  
Following calibration, the VIC model was validated 
using streamflow observations at same observation 
station for the period of 2003-2007.  The results of      the   
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 Figure 2: Calibration and validation of VIC model 
simulation comparing USGS streamflow and 
simulated streamflow. 
 
 
validation showed that model was able to estimate 
streamflow with sufficient accuracy (NSE=0.62). 

The model results show the spatial distribution of 
soil moisture in the soil layers (0-100 cm) from 1998-
2002 due to the decreased precipitation in South Carolina 
(Figure 3).  A 30% decrease in precipitation during this 
time resulted in a less than 20% soil moisture in most of 
the State.  During the drought period, soil moisture in the 
coastal region of the State remained lower than in the 
upstate region.  From the model results themselves, it is 
difficult to determine an exact reason for this result.  Two 
possible explanations that could be explored through 
future work are (i) differences in regional precipitation 
during drought years and (ii) differences in soil 
properties between these two regions of the State.  
Higher soil moisture was estimated from 2003 to 2005 
due to the high precipitation that marked the end of the 
drought.  The precipitation decreased after 2005, 
resulting in low soil moisture at the end of the study 
period.  Late years (2006 and 2007) marked a return to 
drought conditions in the State.   
    When viewed as a time series, soil moisture in the 
deep soil layer (40 cm-100 cm) showed the clearest 
indicator of drought conditions (Figure 4).  On an annual 
basis, it is evident that during drought years (e.g., 2001 
and 2002), this deep soil layer had a soil moisture equal 
to that in the top two layers, whereas during wet years 
(e.g., 2003), soil moisture in the deep layer was much 
higher than the top two layers.  This basic signature is 
also present on a monthly basis, although the monthly 
time series provides additional insight into the seasonal 
aspects of drought impacts.  For example, soil moisture 
showed high values in winter (Dec-Jan-Feb) and spring 
(Mar-Apr-May) months, in general, compared to summer 
(Jun-Jul-Aug) and fall (Sep-Oct-Nov) months.  This was 
out of the phase with high precipitation in fall and low 
precipitation in spring months, and could be explained as 
soil moisture recharge lags in the system.    Soil moisture 
 

 
 

 
 
Figure 3: Spatial distribution of soil moisture in the 
combined soil layers. 
 
     
in the deep soil layer was compared with groundwater 
level observations to justify the use of deep soil layer soil 
moisture as an indicator of drought severity and 
occurrence   (Lakshmi et al., 2004).  The        comparison 



 
 

 
Figure 4: Interannual and seasonal variation of the 
soil moisture in top (0-10 cm), mid (10-40 cm), deep 
(40-100 cm), and combined (0-100 cm) soil layers. 
 
 
showed that all basins followed a similar interannual and 
seasonal variation in deep soil moisture with evidence of 
drought impact during 1998-2002 and 2007 (Figure 5).  
Groundwater levels in the observation wells match 
reasonably well with all basins except for the Savannah.   
The groundwater well used for comparison in this plot 
shows evidence of local impacts that result in a nearly 
constant reduction in groundwater levels throughout the 
study period.   
 
 

 
Figure 5: Comparison of groundwater level with soil 
moisture in the deep soil layer (40-100 cm). 

    In summary, we have calibrated and validated a VIC 
hydrologic model for South Carolina and demonstrated 
how the model can be used to gain insight into state-wide 
water resource conditions.  While the model application 
described here is for analysis of a past drought event, the 
model could rather easily be applied for forecasting 
drought conditions by driving the model with forecasted 
weather conditions.  Such an application of the model 
could provide a useful tool for managing state-level 
water resources.    
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