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Abstract 

The Space Time Distribution of Benthos 
in the Western Arctic Ocean 

 

Jonathan L. Goodall, M.S.E. 

The University of Texas at Austin, 2003 

Supervisor: David R. Maidment 

 

The spatial and temporal distribution of the benthic community of the 
Western Arctic Ocean was analyzed for trends in biomass through geostatistical 
interpolation of a retrospective (1970 – 1995) database of 1,093 point samples.  A 
Geographic Information System (GIS) was used to manage, analyze, and display 
the spatially referenced point samples, as well as the interpolated continuous 
surface of benthic biomass.  The geostatistical interpolation produced both mean 
predictions and prediction standard errors on a continuous scale within the study 
region.  Natural variability of benthic biomass was evident in the standard errors, 
which were of the same magnitude as the prediction mean values.  The final result 
of the spatial analysis revealed very high benthic biomass in the Bering and 
Chukchi Seas and lowest organism abundance on the Alaskan Beaufort Sea shelf.  
Areas of relatively low localized biomass were also noted at the outlets of the two 
major river basins within the study region: The Yukon and Mackenzie River 
systems.  The temporal analysis of samples spanning three decades measured 
within a 40,000 km2 area south of St. Lawrence Island in the Bering Sea showed 
an increase in benthic biomass from 1970 to 1995, but the ability to detect decadal 
temporal trends throughout the study area was hindered by an insufficient spatial 
overlap of data sampled through time.   
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Chapter 1: Introduction 
1.1 BACKGROUND 

The purpose of this study was to identify the spatial and temporal trends of 

benthic biomass in the Western Arctic Ocean (Figure 1) by applying geostatistical 

techniques to a retrospective dataset collected from 1970 to 1995.  For the 

purpose of this study, I define benthic biomass as the abundance, in gm-2 wet 

weight, of all macrofauna larger than 1 mm in size that live on or in the bottom 

sediment of the ocean floor.   

 

 

Figure 1 – The Western Arctic Ocean, the study region for this report.   

The spatial and temporal patterns in benthic faunal biomass can provide 

important information about overlying water column productivity and the 

coupling of carbon between pelagic and benthic communities.  An understanding 

of the linkages between arctic circulation processes and spatial patterns in benthic 
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faunal biomass is critical to our ability to predict the consequences of global 

climate change on arctic marine ecosystems with respect to biological 

productivity on arctic selves. 

This project was funded by a National Science Foundation (NSF) grant 

through the Arctic System Science (ARCSS) research program.  The goal of the 

ARCSS program is to develop a better understanding of the ecosystem-wide 

impacts of climate change on the arctic system.  The Shelf Basin Interactions 

(SBI) project is one of several ARCSS initiatives that address the coupling of 

carbon between arctic shelves and basins.  The SBI project consists of three 

phases that are scheduled to be completed over the next six years. 

Phase I was designed to undertake retrospective studies of datasets in the 

North Bering, Chukchi, and Beaufort Seas that would help focus field research 

efforts in phase II on the cycling and transformations of carbon on the western 

arctic shelves.  Large and potentially invaluable historical databases existed in 

unpublished records from the Western Arctic region that had never been 

synthesized, including thousands of records on the biomass, density, and 

composition of benthic organisms from the North Bering, Chukchi, and Beaufort. 

Work completed by a previous graduate student within the Department of 

Environmental and Water Resources at the University of Texas at Austin, Jóna 

Finndís Jónsdóttir, resulted in a first draft of these data into a single, spatially 

referenced relational database (Jónsdóttir 2000).  Work detailed in this paper 

describes revisions made to the relational database including the addition of 
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sample stations, temporal and spatial synthesis, and integration of water column 

chlorophyll a data.  This spatially referenced database represents a substantial and 

extremely valuable collection of baseline data of the benthic community over the 

past thirty years.   

Phase II of the SBI project (2001-2006) will constitute the experimental 

phase of the research effort in the North Bering, Chukchi, and Beaufort Seas.  The 

SBI program will conclude with a regional modeling effort in Phase III (2007-

2009) that will address the effects of global change on the ecosystems of the 

western arctic shelves and basin (Grebmeier et. al 2001).  All three phases have 

the overarching goal of utilizing the benthos as a spatial and temporal integrator 

of oceanographic processes that could provide a valuable indicator of potential 

global change impacts.  

1.2 STUDY OBJECTIVES 

This project’s primary objective is to describe the spatial and temporal 

pattern of benthic biomass within the Western Arctic Ocean.  Two main tasks 

were employed to meet this objective (Figure 2).  The first task was to retrieve 

additional biological and chemical data relevant to the study area, including 

additional benthic biological and integrated chlorophyll a data from the National 

Oceanographic Data Center (NODC) and other published and unpublished 

Western and Russian sources.  These datasets were then be added to the current 

arctic database to create a more complete account of the benthic community. The 
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second task employed Geographic Information Systems (GIS) software in 

conjunction with geostatistical techniques to examine and graphically display the 

spatial and temporal trends of the benthic community within the Western Arctic 

Ocean.   

The first study task was further divided into four steps.  First, additional 

benthic biomass datasets from unpublished sources were gathered to close data 

gaps in the East Siberian Sea off the Russian coast.  Second, chlorophyll a 

measurements collected in the region were consolidated from all known sources, 

both published and unpublished.  Third, other datasets were located to test 

hypotheses that benthic biomass was correlated with temperature or depth.  

Finally, these additional datasets were incorporated into the arctic database for 

analysis using GIS and geostatistical software.  

The second study task, to determine the spatial and temporal patterns of 

the benthic community using geostatistical models, was accomplished in four 

steps.  First, an exploratory data analysis was performed on the raw samples to 

understand their basic statistical distributions in time and space.  Second, a 

geostatistical model was selected to interpolate benthic biomass at unmeasured 

locations.  Third, a spatially continuous surface of benthic biomass in the Western 

Arctic Ocean was derived from the geostatistical model and a temporal analysis 

was conducted to determine whether any long-term trends were evident in the 

dataset.  Finally, the spatial and temporal analyze were subjected to an uncertainty 

analysis resulting in prediction errors for the interpolated surfaces.   
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Figure 2 – Summary of project objectives and tasks. 

1.3 REPORT OUTLINE 

 Following this introduction, Chapter 2 will review the relevant literature 

for the use of geostatistical methods using GIS.  Chapter 3 will introduce the 

retrospective datasets, discuss how they were gathered, and show the processing 

steps necessary for viewing the spatial data in a GIS.  Chapter 4 will present a 

complete exploratory data analysis of the benthos in both space and time.  The 

results of the temporal and spatial trend analysis of benthos in the Western Arctic 

Ocean will be presented in Chapter 5.  Finally, Chapter 6 will provide concluding 

Primary Goal: Determine the spatial 
and temporal trends of benthic 
biomass in the Western Arctic Ocean 

Task 1: Complete geodatabase 
of chemical and biological data  
 
Sub-tasks 

- add benthic biomass data 
-  add Chlorophyll data 
-  add depth & temperature 
data 
-  compile into geodatabase 

Task 2: Use geostatistics to identify 
spatial and temporal trends for benthic 
biomass 
 
  Sub-tasks 
    -  exploratory data analysis 
    -  geostatistical model development 
    -  prediction surface generation 
    -  uncertainty analysis 
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thoughts on the trend of benthos over space and time and offer recommendations 

for future research and data collection within the study area.   
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Chapter 2: Background 
 

2.1 INTRODUCTION TO ARCGIS AND GEODATABASE DESIGN 

 
 GIS proved critical in the analysis of the spatially referenced station 

measurements of benthic biomass and related attributes.  The specific GIS 

software used in this study was ArcGIS 8.2.  ArcGIS is a commercial GIS 

software system for the visualization, creation, presentation, and map creation of 

spatial data (Minami et al. 1999).  It is the latest development from 

Environmental Systems Research Institute (ESRI) meant to combine the 

company’s previous two GIS systems, ARC/INFO and ArcView, with a common 

interface, but with two licensing levels:  ArcView 8 and ArcInfo 8.  ArcView 8 

provides only a portion of the capabilities of ArcInfo 8, but costs significantly 

less.  ArcGIS is a collective term for both ArcView 8 and ArcInfo 8. 

 One important advance first introduced with ArcGIS is the geodatabase 

data model.  For the geodatabase data model, feature classes are data layers within 

the personal geodatabase.  Feature classes can be grouped into a feature dataset 

where all the feature classes have the same coordinate system (McDonald 1999).  

Feature datasets provide a logical grouping of datasets.  For example, biological 

data can be separated from chemical data or physical data.  Table 1 describes 

feature datasets and feature classes and how they related to previous GIS data 

structures (i.e. coverages and shapefiles).   
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Geodatabase Coverage Shapefile
Collections of 
datasets

A geodatabase is a collection of 
feature datasets

An ArcInfo workspace is a 
collection of coverages

A shapefile folder is a 
collection of shapefiles

Datasets A feature dataset is a collection 
of feature classes

A coverage is a collection of 
coverage feature classes

A shapefile has one 
shapefile feature class

Collections of 
features

A feature class is a collection of 
features of the same type

A coverage feature class is a 
collection of coverage features

A shapefile feature class is 
a collection of shapefile 
features

Features Point, multipoint, polylines, 
polygon, annotation, and 
network

Primary cover feature classes; 
point or label point, arc, and 
node.  Secondary feature 
classes: polygon, tic, link, 
section, and annotation.  
Compound feature classes; 
region and route.

Point, multipoint, line, and 
polygon.

 

Table 1 – Comparing the structure of vector datasets (Minami 1999)  

  

An advantage of the geodatabase data model is that it supports object-

oriented relationships between data layers (McDonald 1999).   For example, the 

recently developed Arc Hydro Data Model is a water resources geodatabase with 

relationships between watersheds and a point placed at the watershed’s outlet 

(Maidment 2002).  The relationships between the watershed and outlet point 

feature classes allows for spatially distributed data within the watershed to be 

summarized at a single related point at the outlet.  The same idea proved very 

useful for creating moving window statistics for exploratory data analysis, as will 

be shown in Chapter 4.  
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2.2 INTRODUCTION TO GEOSTATISTICS 

The spatial and temporal analysis of the benthic community structure 

relies heavily on geostatistical modeling of benthic biomass to provide an 

estimate (with uncertainty) of biomass densities at unmeasured locations.  

Geostatistical techniques, while originally developed for mining engineering, 

have become increasingly important to the earth and natural sciences.  More 

recent applications of geostatistics include estimating marine biomass for 

primarily economic motivations (i.e. where fishermen might find the most 

lobsters).  Prior to discussing these recent applications, however, it is important to 

introduce the basics of geostatistical theory to familiarize the reader with the 

essential mathematics and terminology.   

Most classical statistical methods do not account for spatial information 

within data, so regression techniques using classical statistical theory provide less 

accurate prediction results for data correlated over space (Isaaks and Srivastava 

1989).  Even if one attempts to predict an attribute value over space by using 

nonlinear regression, the attribute is often too irregular, again producing 

inaccurate results (Burrough 1998).  The extension of classical statistics using 

geostatistic techniques is of great value in the assessment of spatial correlation in 

data when predicting values at unmeasured locations (Isaaks and Srivastava 

1989).  Geostatistics accomplishes this task by calculating the attribute value at an 

unmeasured location, Z(x), as the sum of three factors: (1) the deterministic trend, 
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m(x), (2) the autocorrelated variation, )(' xε , and (3) a constant correction factor 

for statistical noise, )(" xε  (Burrough 1998).    The general equation for kriging 

interpolation is:   

 

(1)                                           ")(')()( εε ++= xxmmZ  

 

Ordinary kriging, the geostatistical technique used in this study, assumes 

that m(x) is constant over space and equal to the mean of the sample space 

(Johnston et al. 1999).  Thus, the attribute value at an unmeasured location x, 

Z(x), is simply a function of the autocorrelation factor, )(' xε , and a constant 

correlation factor for statistical noise, )(" xε .  Universal kriging relaxes the 

assumption of a constant mean, but often does not produced more accurate results 

because additional parameters must be introduced to describe the changing mean 

(Johnston et al. 1999).   

Autocorrelation is the tendency for samples separated by less distance to 

be more similar than samples separated by a greater distance.  The spatial 

correlation present in many earth science datasets is commonly called 

autocorrelation to reflect the fact that the dataset is correlated with itself (Isaaks 

and Srivastava 1989).  The autocorrelation factor used in kriging is obtained from 

a model fit to a plot of separation distance (lag, h) vs. semivariance ( )(hγ ) for 

pairs of points separated by a distance h±∆h (Figure 3).  For all pairs of samples 
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separated by a distance h±∆h, the semivariance, )(ˆ hγ , can be calculated using 

equation 2.    

( ) (2)                              )()(
2
1)(ˆ)('

2

1
∑
=

+−==
n

i
ii hXZXZ

n
hx γε  

Once a semivariance vs. lag plot has been generated (also known as an 

experimental semivariogram), a function is fit to the data to model the 

relationship between separation distance and the semivariance, )(hγ  (Figure 3).  

Common fitting functions include the spherical model, the exponential model, the 

linear model, and the Gaussian model.  For this study, the spherical model 

(Equation 3) was selected because it is a commonly used model and because it 

modeled our experimental data well.  

  

Figure 3 – An example empirical semivariogram with a fitting model.   

 

γ(h) 

Separation Distance, h 
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There are a few commonly used terms to refer to significant characteristics 

of the semivariogram (Figure 3).  First, the example model predicts a nonzero 

variance for points separated by no distance.  This discontinuity is referred to as a 

nugget or a nugget effect.  Nugget effects can be the result of either intrinsic 

micro-scale variability within the data or sampling errors, and their magnitude 

provides insight into the smoothness of the data (variability over small separation 

distances).  Another important characteristic of the semivariogram is the range.  

The range is the separation distance for which points separated by more distance 

are not correlated.  The range can be thought of as the radius of influence for each 

sample location.  Each measurement will have some influence on the prediction at 

unmeasured locations within a radius equal to the range around the measurement.  

Finally, the sill is a term given to the semivariance for separation distances greater 

than or equal to the range (Isaaks and Srivastava 1989).    

Once a model for the semivariance has been computed and optimized, it 

can be used to find the weighting factors assigned to all measured points 

neighboring an unmeasured point, iλ , by solving a series of equations.  The value 

at the unmeasured point is then predicted by summing the product of all 

neighboring locations and their associated weight (Equation 4).  To assure the 
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prediction is unbiased, the sum of the weighting factors must equal one (Isaaks 

and Srivastava 1989). 

( ) ( )∑
=

=
N

i
iio sZsZ

1
(4)                                          ˆ λ  

 Because geostatistics predicts measurements at unmeasured locations 

using statistical theory (i.e. correlation), the prediction values are accompanied by 

prediction standard errors or measurements of the uncertainty in the predicted 

values.  This feature separates geostatistical techniques from other deterministic 

techniques such as inverse distance weighting.  The output of the geostatistical 

model can be used to generate a probability density function (PDF) for benthic 

biomass at each unmeasured location.  

 

2.3 GEOSTATISTICS AND GIS 

 One unique quality of this project is its use of geostatistical techniques to 

describe the spatial and temporal distribution of benthos from within a GIS 

environment.  The geostatistical modeling is fully integrated within the GIS 

program as an extension developed by ESRI.  The Geostatistical Analyst 

extension is new to ArcGIS 8 and it includes a number of deterministic and 

stochastic tools for interpolating surfaces from point samples such as inverse 

distance weighting, polynomial fitting, and kriging.   

 Although the Geostatisical Analyst is a relatively new addition to the 

ESRI product line, researchers have long been investigating the ways to link 
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geostatistical techniques with GIS for a number of years.  P.A. Burrough of 

Utrecht Centre for Environmental and Landscape Dynamics at Utrecht University 

in the Netherlands provided a comprehensive explanation of the mutual benefit of 

the joining of geostatistics with Geographic Information Systems (Burrough 

2001).  Burrough focused on the advantage of merging GIS and geostatistical 

software from both the prospective of adding geostatistics to GIS (a GIS expert’s 

perspective) and of adding GIS to geostatistics (a geostatistical expert’s 

perspective).  Because of its relevance to this report, the two paragraphs below 

provide a summary of Burrough’s thoughts.     

The advantage of having GIS functionality coupled with geostatistical 

techniques, Burrough (2001) states, is that the GIS provides a spatial context for 

interpolation and conditional simulation, and tools for the visualization and 

presentation of the geostatistically derived surfaces.  GIS can also serve as a 

storage system for various data layers, providing a context for the layers being 

analyzed with geostatistics.  For example, if one is interested in the distribution of 

precipitation over a basin, the GIS can have the basin outline and the river 

network to provide a context for the precipitation gages and resulting precipitation 

prediction surface.  Zonal statistics can easily be calculated for the precipitation 

over the basin using in-house GIS functionality. 

The advantage of having geostatistical functionality within a GIS is that 

the user can benefit from statistically derived methods for interpolating point 

samples over an area, and in the process, quantify the confidence in the 
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interpolated surface.  Thus, if one has geo-referenced data already in a GIS 

environment, one does not need to bring that data into a different software system 

for geostatistical analysis.  The partnership simply removes the extra step of 

transferring data between GIS and the modeling system.  As a result, geostatistical 

techniques are brought to many who would otherwise not make the effort. 

2.4 USING GEOSTATISTICS FOR BIOMASS ESTIMATION 

Geostatistics have been used in previous research to assess the temporal and 

spatial components of marine life structure.  One notable example is the work 

done by Maynou et al. (1998) on the spatial structure and biomass evaluation of 

lobster populations in the northwestern Mediterranean Sea.  The researchers used 

geostatistical techniques to analyze lobster catches by commercial fishing trawlers 

during two periods separated by six months.  Lobster is the most economically 

important species for Europe, thus the motivation of their research was to predict 

the spatial distribution patterns of lobster at the highest resolution possible.  They 

succeeded in doing so by use of a geostatistical model.   

Another application of geostatistics for biomass estimation in the marine 

science community is Defeo and Rueda (2002).  The objective of their research 

was to quantify the population structure and abundance of sandy beach 

macroinfauna.  In doing so, the researchers used two different approaches to test 

the reliability of each.  The first method was stratified random sampling (design-

based) and the second was geostatistics (model-based).  The researchers 
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concluded that geostatistics is a powerful tool for providing key information on 

the spatial organization and abundance estimation of sandy beach macroinfauna.   

A final application of geostatistical techniques for marine population 

estimation noted in this paper was done by Romaine et al. (2002).  Their research 

compared population size estimates using simple block averages vs. geostatistical 

block averages.  Geostatistical block averages, or block kriging, can be used to 

estimate an attribute value over an area instead at one point.  The authors 

concluded that, when data have a degree of autocorrelation (that is correlations 

over space), block averages may not be appropriate and, instead, geostatistical 

averages using block kriging should be used.  Block kriging results, the authors 

concluded, provide detailed distribution plots and reduce variance error estimates.  
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Chapter 3: Data 
3.1 BENTHIC BIOMASS 

 Work on collecting all known measurements of benthic biomass within the 

Western Arctic Ocean began four years ago through a joint effort between the 

Center for Research in Water Resources (CRWR) and the Marine Science 

Institute (MSI) of the University of Texas at Austin.  Investigators at MSI built a 

database of benthic biomass samples in the Western Arctic Ocean which provided 

a starting point for this research (Jónsdóttir 2000).  The database included samples 

collected by five researchers where each record was minimally defined by the 

latitude, longitude, date, and biomass weight (g/m2) at each collection site.  

Additional information including integrated chlorophyll a, temperature, and depth 

were included for some collection sites.   

A portion of the benthic biomass data came from the National 

Oceanographic Data Center (NODC).  The majority of the NODC data for the 

Western Arctic Ocean was compiled by Broad (1981).  The data was delivered to 

the Marine Science Institute in text file format.  Computer programming scripts 

were needed to transform the text files into database format.  This work was 

carried out by researchers at the Marine Science Institute.  Additional information 

about the NODC benthic biomass, is provided by Jónsdóttir (2000). 

Additional benthic biomass data came from sources outside of the NODC 

including Grebmeier (1987, 1985), Carey (1984), Wacasey (1974), and Feder 
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(1982).  Grebmeier submitted four spreadsheets that included latitude, longitude, 

date, and benthic biomass at each collection site.  Carey and Wacasey’s work 

focused on data collection in the Western Beaufort Sea on the northern coast of 

Alaska, while Feder collected samples in the Bering Sea.   

Over the past two years, additional benthic biomass data have been 

collected and added to database (Figure 4).  The additional data, collected by 

Stoker from 1970 to 1974 and from Grebmeier from 1993 to 1995, was intended 

to close obvious gaps noted in the previous datasets, particularly in the East 

Siberian Sea.  The additional data were processed and added to the Arctic geo-

referenced database feature class following the procedure outlined in Section 3.4.   
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Figure 4 – The 1,093 benthic biomass sampling stations 

3.2 INTEGRATED CHLOROPHYLL a 

 In addition to the supplemental benthic biomass samples, I analyzed 

integrated chlorophyll a data from the study area.  The chlorophyll data provides 

an opportunity to examine the linkages between water column productivity and 

benthic faunal biomass.  Chlorophyll a reflects the abundance of water column 

phytoplankton, which is the major carbon source for bottom-dwelling benthos.  I 

hypothesized that high levels of chlorophyll a in the water column would be 
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reflected in higher levels of benthic biomass, since ungrazed phytoplankton sinks 

directly to the seabed.   

 Some gathered data were not integrated over the water column, but 

represented discreet water column measurements of chlorophyll a at various 

depths.  To create depth integrated results, a Visual Basic for Applications macro 

was written in EXCEL to calculate the integrated chlorophyll a for a sampling 

location based on the measurements of chlorophyll at various depths (see 

Appendix A for code).  The macro was written to be independent of the number 

of depth samples for each location.   

Each station was also analyzed to assure an adequate representation of 

chlorophyll over the total depth.  Single measurements of chlorophyll a were 

excluded from the database on the basis that they did not accurately represent the 

integrated chlorophyll at the measurement location.  The final dataset included 

2,514 chlorophyll samples (Figure 5). 



 21

 

Figure 5 – Map of the chlorophyll a measurements in the Western Arctic Ocean. 
 

3.3 CORRELATED MEASUREMENTS 

 It seemed logical that temperature and depth might be correlated to higher 

biomass density.  If so, this additional information could be included into a 

geostatistical model to test these hypotheses.  In addition to chlorophyll a, I 

hypothesized that benthic biomass would be inversely correlated to depth, but 

positively correlated with temperature.   The result of correlations will be 

presented in the exploratory data analysis section of Chapter 4.   
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3.4 INCORPORATION INTO GIS 

Once the biomass, chlorophyll, depth, and temperature data were gathered 

and preprocessed, the next step was to incorporate the data into a personal 

geodatabase as feature classes (Figure 6).  Physical, Biological, Chemical, and 

Descriptive are the four feature datasets, providing the highest level of hierarchal 

data storage.  Within the Biological dataset are two feature classes, biomass and 

chlorophyll.  The Descriptive dataset houses a number of feature classes with the 

purpose of providing the background context for the sampling feature classes, i.e. 

land surface and moving window statistics grids.   At present, the Chemical and 

Physical datasets are empty, but could be utilized if future efforts incorporate 

these data into programs that address the linkages between biological and 

physicochemical processes.     
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Figure 6 – The structure of the geodatabase used to integrate all previously 
collected benthos measurements into one GIS compatible format. 

For the geostatistical analysis, it was necessary to transform the data from 

geographic coordinates (latitude and longitude) to a reference system (x and y 

coordinates).  Numerous mathematical transformations, commonly referred to as 

map projections, can be used to convert geographic locations in three dimensions 

to reference locations in two dimensions.  As a result of transforming a 3D image 

to a 2D image, each map projection distorts one or more of the four properties of 

the geographical system: shape, area, distance or direction (Minami 1999).  For 

this project, the Lambert Azimuthal Equidistance projection was selected because 

kriging relies heavily on the separation distance between points, thus maintaining 

accurate distance measurements is critical.   Appendix B contains the specific 

parameters of the Lambert Azimuthal Equidistance projection used in this 

research.  
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Area preservation is also important because one objective of this research 

is to quantify temporal changes in biomass within a fixed area in the Arctic 

Ocean, thus the area of the projected map must be the same as the real-world area 

of a 3D globe.  It is not possible, unfortunately, to project the geographic 

coordinates into a reference system that preserves both distance and area (Minami 

1999).  Therefore, there were inaccuracies in the computation of temporal 

changes in biomass over fixed regions due to distortions of the area size due to 

using a distance preserving projection.  These inaccuracies should not be 

significant, since they will be identical for each temporal period and will not bias 

the analysis towards one time period over another.    
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Chapter 4: Methodology 
 The previous section addressed the collection of benthic biomass, 

chlorophyll a, depth, and temperature data from both published and unpublished 

sources and how that data was input into a geodatabase.  In the subsequent 

sections I describe the spatial and temporal analysis portion of the research.  First, 

prior to the application of any geostatistical models, there must be a thorough 

exploratory data analysis (EDA) to better understand the statistical properties of 

the dataset.  This knowledge is critical for creating a statistical model to quantify 

spatial and temporal patterns present in the benthic community.  The spatial and 

temporal exploratory data analyses will be handled independently, starting first 

with the spatial analysis.    

4.1 EXPLORATORY SPATIAL DATA ANALYSIS (ESDA) 

The objective of exploratory spatial data analysis is to familiarize the user 

with the data to aid in the selection of a geostatistical model for biomass 

estimation at unmeasured locations (Kitanidis 1993).  The Exploratory Spatial 

Data Analysis must identify the following features of the dataset: the presence of 

outliers and large-scale trends, its distribution, and the small or micro-scale 

variability (Johnston et al. 1999).   

4.1.1 Outliers 

As with any probability model, the presence of outliers can greatly 

influence the model prediction accuracies (Isaaks and Srivastava 1999).  Thus, 
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prior to the selection and development of a geostatistical model, it is beneficial to 

identify any potential outliers.  Outliers are only removed with adequate 

justification.  It is often difficult to classify extreme measurements as outliers, 

especially when the researchers conducting the statistical analysis were not 

involved in the sample and data collection (as is the case here).  When suspicious 

points are identified, the values and calculations used to derive the values are 

double checked.  Unfortunately, this is not possible here.   For this study, the 

criterion for removing potential outlier removal will be based on the benefit 

derived from lowering the estimation error.  This is, admittedly, a subjective 

decision, but the best that can be done given the circumstances.   

One tool within the Geostatistical Analyst Extension for ArcGIS that 

proved helpful in identifying outliers and their effect on modeling the spatial 

correlation among data is the semivariogram cloud.  A semivariogram cloud is a 

plot of the semivariance between a pair of measurements with respect to the 

distance separating the pair (the lag).  This produces a spatially summarized 

benthic biomass dataset (Figure 7).   

There exists a group of measurements with semivariance values far 

exceeding all others.  The semivariogram cloud also shows that all of the high 

semivariance values are caused by a combination of one specific cell with many 

other cells.  Thus, the one common cell is causing semivariance values that are 

distinctly different than those resulting from all other cell pairings.  If the cell is 

kept in the dataset, its influence will significantly increase the variability of the 
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prediction results.  I considered this cell (and its one underlying point) as an 

outlier and ignored it in the geostatistical estimation process in order to improve 

prediction confidence.    

 

Figure 7 – Identification of outliers using the semivariance cloud tool 

 

4.1.2 Distribution Analysis 

 Normally distributed random variables are beneficial for geostatistical 

interpolation for two reasons: 1) errors from the generation process are also 

normally distributed (Johnston et al. 1999), and 2) to account for the correlation 

between local variability and local mean.  Non-normal distributions are often 

subject to this correlation of local variability and local mean, termed the 
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Proportional Effect (Cressie 1991) and can bias prediction results.   For these two 

reasons, the biomass dataset was mathematically transformed to a normal 

distribution prior to estimation and then mathematically transformed back to its 

original distribution following interpolation. 

 A histogram of the biomass samples shows a positive skew nearly 

resembling a lognormal distribution (Figure 8).   A log transformation of the 

dataset brought the distribution closer to normal, but could be improved by using 

a Box-Cox transformation with λ = 0.15.  The Box-Cox transformation (Equation 

5) is a method for transforming the frequency distribution of a dataset )(sZ to 

Normal )(sY  by adjusting the fitting parameter,λ , between zero and one 

(Johnston et al. 1999).    

 

( )
λ

λ 1)()( −
=

sZsY                                                          (5) 
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Figure 8 – Histogram of the benthic biomass dataset  

   

For the benthic biomass dataset, a fitting parameter of 0.15 was used to 

produce a normally distributed dataset from the original dataset (Figure 9).  This 

transformed dataset was input into the geostatistical model to estimate benthos at 

unmeasured locations.  Once the estimations were calculated from the 

transformed dataset, the model applies an inverse Box-Cox transformation to 

calculate the estimations with respect to the original dataset. 
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Figure 9 – Histogram of the transformed benthic biomass dataset  

4.1.3 Large-Scale Trends 

 The presence of large-scale trends within a dataset is important when 

selecting a geostatistical model because different models deal with trends in 

different ways.  As mentioned in the section, ordinary kriging interpolates a 

variable at an unmeasured location based on the assumption that the mean of the 

variable is constant.  In other words, ordinary kriging assumes no large-scale 

trends exist in the dataset.  Universal kriging is an interpolation method which 

allows for large-scale trends within datasets, but at the expense of introducing 

additional parameters which must be estimated to describe the nature of the trend.  

That said, it is sometimes the case that, even with large-scale trends present in 

data, ordinary kriging produces results as accurate as universal kriging (Johnston 
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et al. 1999) because fewer fitting parameters need to be estimated for an ordinary 

kriging model compared with a universal kriging model.  

 A three dimensional representation of the benthic biomass in the Bering 

Sea show high values that greatly exceed those measured in the Beaufort Sea off 

Alaska’s northern coast (Figure 10).  Because of this discrepancy in magnitude 

between Bering Sea and Beaufort Sea, a trend exists in the North to South 

direction.  To account for these trends, the points were detrended by a cubic 

function prior to the geostatistical modeling using ordinary kriging.  This is 

another way of accounting for trends without using the more sophisticated 

universal kriging model.         

 
Figure 10 – 3D trend analysis of benthic biomass.  Perspective is from Northern 

Siberia looking southeast. 
 

4.1.4 Small-Scale Variability 

 The ability to accurately predict the overall surface of benthic biomass on 

a continuous scale relies heavily on the presence of small-scale variability of the 
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dataset.  The fundamental assumption of the geostatistical interpolation method is 

that spatial continuity exists within the data, that is to say that two samples close 

to one another are more likely to be similar compared with two samples taken far 

apart (a property termed autocorrelation and introduced in Section 2.2, 

Introduction to Geostatistics).  It is this correlation between separation distance 

and attribute value difference for all pairs of points that is captured in the 

semivariogram and hence used in the estimation of the attribute at unmeasured 

locations (Isaaks and Srivastava 1999).   

 If a dataset does not exhibit spatial continuity, it is virtually impossible to 

predict unmeasured locations on the basis of geostatistical models, no matter what 

model is used (Isaaks and Srivastava 1999).  One measure of spatial discontinuity 

is the nugget effect (Johnston et al. 1999).  If the semivariance does not approach 

zero as the lag (separation distance) approaches zero, a nugget exists within the 

data.  Sources of a nugget effect can be either measurement errors or spatial 

sources of variation at distances smaller than the sampling interval (Johnston et 

al. 1999).  While it is nearly impossible to eliminate all sources of measurement 

error, it is possible to reduce the spatial sources of variation at distances smaller 

than the sampling interval.  This can be done by carefully considering the 

appropriate scales of spatial variation that are most important to the research at 

hand.  

 For the benthic biomass dataset, a preliminary look at the spatial 

continuity suggested that small-scale variability might significantly hinder the 
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development of a geostatistical model for point prediction.  In the Bering Sea, 

measurements varying by three orders of magnitude were recorded in nearly the 

same geospatial location (Figure 11).  This observation raises the question of the 

spatial scale at which biomass can (and should) be predicted.  Obviously, it will 

be virtually impossible to make accurate predictions of the benthic biomass 

spatial distribution at the sampling scale of 1m2.   Kriging methods can fit a 

surface to the raw sampling points, yet the prediction standard error (or the 

standard deviation) for the predictions will be quite significant.  The samples are 

simply too random at such a fine resolution to predict with certainty.  In addition, 

the variability will introduce small-scale noise in the prediction.  Thus, to reduce 

the variability of the predictions, the samples may be binned and up-scaled to 

smooth the small-scale variability prior to geostatistical interpolation. 
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Figure 11 – A preliminary look at the small-scale variability of the benthic biomass 

dataset focusing on the Bering Sea 

The individual point samples of biomass were up-scaled using square bins 

of 1, 50, and 100 km in length to investigate the most appropriate scale for 

accurate yet sufficiently detailed interpolation.  The aggregating of individual 



 35

samples into spatial bins was accomplished by first creating three grid feature 

classes with 1, 50, and 100 km length squares.  Next, a one to many relationship 

was created to link each grid cell to the points that fall within its boundaries.  The 

relationship was built using Visual Basic for Applications macros written in 

ArcGIS (Appendix C).  All points were given a CellID corresponding to the cell’s 

ObjectID and summary statistics were calculated for each grid cell based on the 

points within that grid cell.  The summary statistics calculated were mean, 

standard deviation, and count.   

 The grid cells provide moving window statistics for the study area.  If the 

grid cells are used as the input dataset for interpolation, the resulting prediction 

map will have less detail, but also less prediction error (variance) compared to a 

prediction surface generated using the exhaustive dataset.  The goal is to balance 

these two qualities of the prediction map: local detail and overall appearance and 

accuracy (Isaaks and Srivastava 1999), a subjective task that depends on the final 

use for the prediction maps.  In this case, the maps will serve as informational 

tools for the marine science community where large-scale trends are important.  

Loss of detail in the prediction results is tolerable in return for a smoother 

prediction surface that clearly shows large-scale trends. 

 Another advantage of the grid cells is to test the correlation between local 

mean and local variance (Isaaks and Srivastava 1999).  If the local mean and 

variance are correlated, a phenomenon commonly referred to as a proportional 

effect, the information can be used to obtain unbiased estimates of standard 
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deviation values for predicted benthic biomass mean values.  This is often a better 

method for predicting standard deviation when compared to the prediction 

standard error surface generated by the Geostatistical Analysis extension of 

ArcGIS (Rossi 2002).   

 Plots of local mean with respect to local variance of the benthic biomass 

grid datasets show that there is a positive relationship between biomass and 

variability.  Furthermore, the local variability is nearly as high as the local mean 

for the study region.  A linear relationship for the two variables using 100km grid 

cells as bins with at least six samples in each bin showed very good correlation 

between the two variables (correlation coefficient ρ = 0.96 for the thirty-nine 

cells).  The resulting equation can be used to calculate local variance (σ̂ ) given 

local mean ( m ). 

69.6846.0ˆ += mσ                                                      (6) 
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Figure 12 – Linear regression of local benthic biomass mean versus local benthic 
biomass standard deviation.  

  A linear regression that relates local mean with local variation for benthic 

biomass indicates that the variability of benthic biomass is nearly equal to the 

magnitude of the benthic biomass sample.  This is evident in the Bering Sea 

where benthic biomass measurements varying by three orders of magnitude were 

sampled at nearly identical locations.  Because the local variability of the dataset 

is significant, confidence intervals for predictions at benthic biomass point 

locations will be wide when the predicted mean biomass is high, no matter what 

model is used (Isaaks and Srivastava 1989).                                            
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4.1.5 Correlations with Other Variables 

In addition to the benthic biomass samples, additional datasets were 

collected that might be related to benthic biomass densities to provide additional 

information that will improve interpolation results.   The additional datasets are 

chlorophyll a integrated over the column depth, water temperature at sampling 

locations, and depth at sampling locations.  Scatterplots of all combinations of 

benthic biomass with the other three variables were made for each scale (sample, 

1, 50, and 100 km).  The best results of each are presented in Figure 12. 
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Figure 13 – Cross correlation between benthic biomass and (a) chlorophyll, (b) 
water temperature, and (c) depth. 
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 Unfortunately, the scatterplots show little to no correlation between 

benthic biomass and integrated chlorophyll a, depth, or temperature.  The 

correlation coefficients for all three were less than 0.4.  The correlation coefficient 

only accounts for linear correlations, however, so it is possible that the data might 

be nonlinearly related.  In addition, other factors not accounted for may be 

masking cross-correlations between biomass and the other variables.  One 

suspicious combination is between biomass vs. depth.  The scatterplot of biomass 

with depth shows that, if deeper than 200 to 300 m, the benthic biomass is not 

likely to exceed approximately 100 g/m2.  Because of this relationship and due to 

the fact that the cross-correlations will only help and never hurt the geostatistical 

model, all three cross correlations shown above were included in the co-kriging 

model (co-kriging to indication correlations with other variables are included 

within the model (Isaaks and Srivastava 1989)). 

 The potential to include correlated data for spatial interpolation can be 

very powerful if cheap data can be shown to be related to expensive data.  While 

minimal correlation exists in the datasets used here, this approach should not be 

discounted.  In fact, if additional resources were available, this might be a 

worthwhile place to start to refine the geostatistical model developed through this 

research. 

 To summarize, the findings of the Exploratory Spatial Data Analysis that 

will be used in the development of a geostatistical model are as follows. 
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 1.) A 100 x 100 km grid of spatially averaged biomass values is used to 

reduce small-scale noise in the raw dataset. 

 2.) One cell of the gridded dataset is removed prior to geostatistical 

modeling.  This cell has an average biomass value that is not representative 

of the spatially averaged benthic biomass at its location. 

 3.) The data are transformed using a Box-Cox function to produce a normal 

distribution. 

 4.) A cubic function is fit to the data prior to Ordinary Kriging to remove 

trends in the data. (Note: The model used for the geostatistical analysis, 

Geostatistical Analysts for ArcGIS, does not require the specification of 

exact coefficients for a detrending function, only the order of the function to 

be used.  The fitting of the function and generation of coefficients is all done 

internally and hidden from the user.) 

 5.) Point samples of depth, water temperature, and chlorophyll a are 

included in the model because of possible cross-correlation with benthic 

biomass (although the correlation between biomass and the other variables 

appears to be minimal.) 

4.2 EXPLORATORY TEMPORAL DATA ANALYSIS 

The preceding discussion of the spatial distribution of benthos assumed 

the measurements taken were independent of the time they were measured.  The 
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appropriateness of this assumption, and the general structure of the temporal 

distribution of measurements, will be investigated in this section.  The goals of 

the exploratory temporal data analysis are to test assumptions made by the spatial 

analysis (that the data are independent of collection date) and to ascertain 

information necessary for the temporal statistical modeling. 

4.2.1 Temporal Distributions 

 The yearly distribution shows that the majority of samples were collected 

in the 1970s and subsequent voyages in the 1980s and 1990s have added to the 

complete benthic dataset (Figures 14a).  The monthly distribution shows that 

nearly all of the samples were taken during the summer months (Figure 14b).  

This summer-weighted monthly histogram is an important characteristic of the 

dataset because it limits any seasonality effects that might exist.   

4.2.2 Long-Term Temporal Trends 

 The complete dataset contains benthic biomass measurements from three 

decades.  If benthic biomass densities are to be considered independent of 

collection date for the spatial analysis, there must not be any significant long term 

trends in the overall dataset.  On the other hand, if a significant long term trend 

does exist in the dataset, while it may complicate the spatial interpolation, it may 

also provide valuable information about how climate change is affecting the 

benthic community.  It is difficult to interpret the time series because the samples 

collected for each year are not uniformly distributed over the sampling 
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Figure 14 – (a) The yearly distribution of biomass collection dates. (b) The monthly 
distribution of biomass collection dates 

region (Figure 15).  This means that, while average benthic biomass is lower in 

1979, it is because the samples collected during this time were mainly in the 

Beaufort Sea instead of the Bering Sea.     

a) 

b) 
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Figure 15 – Time series of benthic biomass measurements 

 
In order to account for the difference in benthic biomass mean within the 

different seas when accounting for temporal trends, it is only appropriate to 

compare points within generally the same geographical location, because the main 

benthic biomass is not constant over the entire study area.  Two locations were 

found where sufficient measurements from two or more decades exist so that 

temporal changes might be deduced.  One of the areas is just north of St. 

Lawrence Island (southwest corner: 170°54’15”W 63°32’59”N, northeast corner 

167°8’16”W 65°30’59”N) and the other is just south of the same island 

(southwest corner: 170°20’49”W 61°36’42”N, northeast corner 168°56’41”W 

63°37’60N); both are 200km by 200km square regions (Figure 16).   These two 
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areas will be used to detect if the benthic biomass density shows significant yearly 

change.     

 

Figure 16 – The Two Comparison Areas 

The northern comparison region contains twenty-eight samples from 

1970-1984 along with thirty-nine samples from 1984-1990 and shows similar log-

normal distributions as seen in the overall biomass dataset (Figure 17).  A similar 

analysis was conducted for the southern comparisons region.   The region 

contains twenty-one samples from 1970-1984 and thirty-three samples from 

1984-1990 (Figure 18).  Initial inspection suggested that the two temporal datasets 

are not as similar as those in the northern region, a possibility that will be 

discussed in the results section.   

South Region

North Region
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Figure 17 – The Northern Temporal Comparison Region 

 

Figure 18 – The Southern Temporal Comparison Region 
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To summarize the findings of the exploratory temporal data analysis, two 

regions with overlapping benthic biomass samples from different decades were 

identified.  Initial visual inspection of the two regions suggested that the northern 

region showed no change in benthic biomass from 1984 to 1996, but the southern 

region shows evidence of an increase in benthic biomass from 1970 to 1996.   I 

hypothesize that the population means of the two temporal datasets are different.  

This hypothesis will be tested following the generation of an interpolated surface 

(Section 5.2).  The interpolated surface will better account for biases due to the 

spatial distribution of the sampling points.   

4.3 MODELING THE AUTOCORRELATION: THE SEMIVARIOGRAMS  

This section contains the critical part of geostatistical analysis: to construct 

a semivariogram that accurately represents the autocorrelation within the benthic 

biomass dataset.  The usual first step in constructing a semivariogram is to make 

broad assumptions about the dataset to produce a first draft semivariogram.  From 

there, different assumptions may be relaxed to observe their effects on the model.  

The broad assumptions generally used are 1) that the dataset has spatial continuity 

without significant noise so that a surface can be fit to the model, 2) that 

autocorrelation is dependent upon the distance separating points only and not the 

direction between two points (isotropy) and, 3) that the entire benthic biomass 

dataset is similar enough to be grouped into one semivariogram.  
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The semivariogram developed from these three assumptions has a fairly 

significant nugget of approximately 6.5 g2/m4 (Figure 19).  This infers that if two 

samples were taken at precisely the same location, the difference between the 

samples would likely be ±2.5 g/m2.   The autocorrelation of the dataset can be 

seen by the increasing semivariance with increasing separation distance.  The 

range is the separation distance where the semivariance first becomes constant.  In 

the benthic biomass dataset, the range is approximately 160 km.   This means that 

each measurement has a radius of influence of 160 km – an important 

characteristic of the overall dataset when planning future data collection voyages.  

The semivariance at the separation distance equal to the range is referred to as the 

sill.  It is an indication of the semivariance between two uncorrelated points and is 

approximately 15 g2/m4 for the benthic biomass dataset.  The ratio of the sill to 

the nugget gives a measure of the autocorrelation present in the dataset.   
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Figure 19 – First draft of semivariogram 

Next I investigated the spatial continuity of the dataset at various spatial 

scales.  The semivariogram of the samples at observation scale (0.1m2) is the 

starting point for this analysis (Figure 19).  As discovered through the exploratory 

spatial data analysis section, benthic biomass at this scale is highly variable, thus 

making the prediction standard error of the model relatively high.  It might be 

advantageous, therefore, to “zoom out” from the raw dataset to get a better idea of 

the benthic biomass hotspots.  Thus, three grids were generated, one with 1 km 

grid cells, one with 50 km grid cells, and the final with 100 km grid cells.  Then 

the raw data samples were averaged for each grid cell.  Semivariograms for all of 

the three up-scaled spatially averaged grids were computed (Figure 20) and 

compared to the observational scale semivariogram (Figure 19).  

 

 

10 km x 10 km 
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50 km x 50 km 
 

 

100 km x 100 km 
 

Figure 20 – The up-scaled semivariograms 

 
 A summary of the important characteristics for each semivarigoram shows 

that the greater the spatially averaged prior to producing the semivariogram, the 

greater the datasets show an autocorrelation between separation distance and 

semivariance, as evident by in the increasing sill to nugget ratio (Table 2).  The 

range of the data, or the radius of influence for each sample, also increases, partly 

because the samples on average are further apart and partly because the samples 

have been smoothed to remove small-scale variability.   
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all benthos 
samples

10km x 10km 
grid dataset

50km x 50km 
grid dataset

100km x 100km 
grid dataset

Range         
km 153 360 470 590

Sill           
(g/m2)2 14.6 10.6 9.3 12.7

Nugget        
(g/m2)2 7.3 4.3 1.8 1.1

Sill/Nugget 2.0 2.5 5.2 11.5

RMS 243 248 185 147
 

Table 2 – Summary of up-scaled semivariograms 

Choosing the best semivariogram from the four presented here is a 

subjective task.  The spatially averaged grid data produce predictions with lower 

variance, but at the expense of a loss in information.  One the other hand, the raw 

dataset surface contains the most information, but the variance of the predictions 

is often as high as the means of the predictions.  The most appropriate dataset to 

use, therefore, depends on how the dataset will be used and how important 

accuracy is compared to local detail for that particular use.  For this study, it was 

decided to use the 100 x 100 km grid cells because they best represent the large 

scale spatial trends and the location of large scale abnormalities in benthic 

biomass density.  Although the 100 x 100 km scale dataset is used here, it would 

be possible to follow the same procedures with any of the other datasets, if one 
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thought the increase in local detail of the predictions to be of more value than the 

large scale trends.  

The second assumption that was investigated is that the semivariance 

depends only on separation distance and not on separation direction.   This idea 

that the correlation between points could be based on direction as well as distance 

is called anisotropy.   One example of assuming anisotropic conditions is for 

modeling the dispersion of a pollutant in a groundwater aquifer.  The 

concentration of the pollutant is likely to be more correlated in the direction of 

groundwater flow than in directions perpendicular to flow.   

Based on this idea, it makes sense that benthic biomass might be 

anisotropic with a more significant correlation in the direction of general ocean 

currents.  However, this research found that semivariograms with different search 

directions did not show any improvements on the omni-directional 

semivariogram.   The exploratory spatial data analysis supported this finding by 

showing no significant preference for benthic biomass in a specific direction.  

Thus, the omni-directional semivariogram was kept.  It should be noted that while 

there is not specific preference for directional correlation looking at the overall 

dataset, within particular seas where the direction of water flow is predominately 

in one direction, benthic biomass might be anisotropic, an idea that will be 

addressed later. 
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The final assumption implicit within the first draft semivariogram is that 

all benthic biomass data are of similar statistical distribution and relationship and, 

thus, it is appropriate to group all samples into one semivariogram.  The 

exploratory spatial data analysis, however, suggested that the benthic biomass 

distribution in the Beaufort Sea off the northern coast of Alaska is different than 

the benthic biomass distribution in the Bering Sea.   To investigate this 

assumption more fully, the entire benthic biomass dataset was divided by their 

respective Seas (Table 3). 

 

Beaufort Sea Bering Sea East Siberian Sea Chukchi Sea
Count 416 340 27 73
Min 0.01 0.01 1.17 0.01
Max 377.4 3222.2 637.75 838
Mean 32.921 369.57 225.16 166.95
Std. Dev. 46.401 446.27 192.27 174.98
Skewness 3.1151 2.7849 0.601 1.4394
1st - Quartile 2.685 77.2 69.032 15.61
Median 18.07 231.07 138.78 134.06
3rd - Quartile 43.675 509.1 394.03 253.68  

Table 3 – Summary statistics from the benthic biomass samples binned by Sea 

 Clearly, the benthic biomass population in the Beaufort Sea is distinct 

from that of the other seas.  The mean benthic biomass for the Beaufort Sea was 

33 g/m2, which is significantly lower than the means of 370, 225, and 167 g/m2 

for the Bering, East Siberian, and Chukchi Seas, respectively.  Following the 

development of a geostatistical model based on the exhaustive dataset, the 
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Beaufort Sea dataset is isolated from the overall dataset and a geostatistical model 

is developed for just this sea to better predict the spatial distribution of benthos.  

4.4 SELECTING A GEOSTATISTICAL MODEL 

 The purpose of the exploratory data analysis conducted in the previous 

section was to aid in the selection of a geostatistical model for the prediction of 

benthic biomass at unmeasured locations.  When selecting a model, there are three 

important guidelines to follow (Kitanidis 1993).   

1) Choose the simplest model consistent with the data.   

2) For practical estimation purposes, the right model is the one which 

represents available information about the structure of a spatial 

variable.   

3) Make use of available information.   

Based on these guidelines, the model selected at the outset of this research was an 

isotropic (direction independent) ordinary kriging model.  Through the modeling 

process, simplifying assumptions were made and then relaxed to judge their 

relative impact on the prediction accuracy (see the exploratory data analysis 

section).  It is important to understand that the modeling process is an iterative 

one where one starts with an exploratory data analysis and simple geostatistical 

model and then adjusts assumptions and parameters to minimize the model error 

(Figure 21).   
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Figure 21 – Flowchart of geostatistical model development (Kitanidis 1993) 

 
 

 The criterion for model validation is typically the root mean square error 

(RMS) between the estimated and observed measurements.  The Geostatistical 

Analyst extension of ArcGIS estimated measured locations by ignoring the 

measurement and using the model to predict what the value would be at that 

location.  It is, therefore, not necessary to separate the original dataset into two 

sets: one for modeling and one for error analysis.  The model assumptions and 

Exploratory data analysis 
• Batch 
• Experimental variogram 

Tentative selection of model 
• Constant or variable mean? 
• Isotropic or anisotropic? 

Parameter estimation 
• Adjusting parameters to 

Optimize goodness of fit 

Model 
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Adjust 
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parameters are adjusted to decrease the RMS to an acceptable level (or the lowest 

level possible).  Once an acceptable RMS has been reached, the model is 

accepted. 

4.5 PREDICTION AND STANDARD PREDICTION ERROR (PSE) SURFACES 

 Following the semivariance model development, it was possible to use the 

model to predict benthic biomass at all locations and, because geostatistics is a 

stochastic tool built from statistical theory, quantify the accuracy of all point 

predictions.   These two quantities, estimated benthic biomass and prediction 

standard error, were generated as raster datasets by the geostatistical analyst and 

will be presented in the Results Chapter 5 of this report.   

4.6 VISUALIZATIONS 

 One advantage of using GIS is that there exists a wealth of in-house tools 

for the visualization of spatial data in one, two, three, or even four dimensions.  

With these visualization abilities, it is possible to show the space and time 

distribution of benthos within the Western Arctic in an easily understood manner.  

Within the ArcGIS suite of programs is ArcScene, designed for viewing multiple 

data layers in three-dimensional space.  Using ArcScene it is possible to raise the 

biomass values in the z-direction to show the magnitude of biomass measured at 

each location.  Likewise, the continuous prediction surfaces can also be raised 

according to the biomass values for each cell to show the spatial distribution of 

predicted benthic biomass density. 
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 To visualize the temporal trends in the benthic community in 4D, it is 

possible to extend ArcGIS to show how an attribute will change over time.   One 

example is the Time Series Viewer which is part of the Arc Hydro Toolset.  The 

Time Series Viewer allows ArcGIS to show changes in attribute value over time 

by repopulating an attribute value with time sequential values for each time step.  

For example, to show the movement of a storm over a river basin, the Time Series 

Viewer will, for each time step, change the precipitation value for each 

catchment.  The result is an illusion of how the storm is moving over the basin.  

This Time Series Viewer could be used to show how benthic biomass is changing 

over time in a similar manner, if sufficient temporal data existed in a relatively 

uniform distribution of the study area. 



 58

Chapter 5: Results 
This section will present the findings obtained from the geostatistical 

analysis of the benthic biomass measurements, with the spatial and temporal 

results presented separately.  The main objectives of the spatial trend analysis 

were to 1) predict the continuous spatial distribution of benthic biomass and, 2) 

identify hot and cold spots where biomass is abnormally high or low.  The main 

objective of the temporal trend analysis was an attempt to isolate any evidence of 

long term variations in benthic biomass density.  Such evidence could provide 

significant insight into the impacts of observed climate change on benthic 

community structure.     

 

5.1 SPATIAL TRENDS OF BENTHIC BIOMASS 

 The raw dataset of benthic biomass point measurements (Figure 22) 

provides some evidence of the spatial patterns of the benthic community.  From 

this plot, it is clear that benthic biomass is lower in the Beaufort Sea and higher in 

the Bering Sea, but there is a significant amount of scatter (or noise) in this raw 

dataset due to a high variability of measurements in the Bering Sea, making the 

identification of trends difficult.  Geostatistical techniques predict the mean and 

standard deviation of benthic biomass on a continuous scale for discrete point 

samples.  If kriging, a geostatistical technique, is used to predict the benthic 

biomass distribution from this raw data, the variability (or prediction error) of the 
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kriging estimates will be quite significant and might dampen otherwise significant 

large scale trends.  Thus, reducing the variability of the raw dataset by “zooming 

up” will lessen small scale variability in order to amplify large-scale trends. 

 

 

Figure 22 – 3D representation of benthic biomass point measurements.  X is to the 
East, Y is to the North.  

 

In order to reduce the variability of the biomass sample, bins were used to 

spatially average local samples and thus provide an average value over a given 

area.  The most obvious result of the spatial averaging over 100 km grid cells 

(Figure 23) is the lessening of variability within measurements at a single 

Y 
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location.  The smoothing has traded smoothness for detail.  It is also important to 

note that one sample is significantly different than all other samples (as discussed 

in section 4.1.1).  The prediction surface was generated using this dataset, 

ignoring the one abnormally high sample point.   

 

 
Figure 23 – 3D representation of benthic biomass 100km by 100km averaged data  

 The continuous surface of benthic biomass interpolated using ordinary 

kriging and the spatially averaged data indicate that regions of highest biomass 

occur in the Bering Sea.  A semivariogram, which captures the autocorrelation 

critical for generating the continuous surface, shows a radius of influence for each 

sample of approximately 350 kilometers (Figure 25).  This means that each point 

is predicted as a weighted average of samples within 350 kilometers of that point.   
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Measurements closer to the prediction point are weighted more heavily than 

distance points according to the function determined by the semivariogram.    
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Figure 24 – The contours of benthic biomass (g/m2) in the Western Arctic Ocean based on geostatistical interpolation of 

the spatially averaged (100km by 100km) dataset.   
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Figure 25 – The semivariogram model using to generate the continuous surface.   

One potentially meaningful realization from these contours is the 

reduction in mean benthic biomass seemingly related to the outlets of major river 

basins.  Both the Yukon and the MacKenzie Rivers have an apparent negative 

impact on benthos.  This is due to the fresh water discharging from the rivers into 

the sea water and lowering the sea water’s salinity.     

Also significant is the high benthic biomass mean predictions in the 

Barrow Canyon, off the northwest coast of Alaska with predicted mean benthic 

biomass of above 360 g/m2.  This region utilized frequently by bowhead whales 

which are grazing on zooplankton; much of the phytoplankton produced here also 

falls directly to the seabed and provides food for the benthic community.  These 

features are well defined by the geostatistical techniques.  

The geostatistical model also produces predictions of the uncertainty 

associated with each estimate (Figure 24).  These two parameters fully describe 
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the benthic biomass distribution at point samples modeled as a random variable.  

Thus, the prediction mean and standard error can be used to generate a probability 

density function (PDF) of benthic biomass at any point within the study area.   

The geostatistical program used in this research does output prediction standard 

errors, but these are biased unless the sample set used is multivariate normally 

distributed.  A sometimes better (less prone to biases) measure of standard error is 

to use the proportional effect (relationship between mean and standard deviation) 

documented in the raw dataset (Rossi 2002).  Doing so allows one to calculate 

standard errors based on the predicted mean values.   

Using this approach, standard deviation and mean values were calculated 

for six locations within the study region.  Figure 26 shows the probability density 

function for these six locations.   The distribution assumes a Box-Cox distribution 

with λ=0.15 (as found for the raw benthic biomass dataset).   The probability 

density functions can be used to calculate confidence intervals for benthic 

biomass at any location.  The plot shows what is expected: high variability in the 

Bering Sea where biomass means are high and low variability in the Beaufort Sea 

where means are low. 
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Figure 26 – The Probability Density Function for benthic biomass predictions 
at six locations  

 
 

As mentioned previous, the disadvantage of the 100 by 100 km 

smoothing is the loss of detail in the spatial variability of benthos (Figure 

27).  Of particular importance is the Beaufort Sea where recorded highs in 

benthic biomass have been lost due to the spatial averaging.  This 

information, however, is very important to the marine community.  Taking 

this observation into account suggests that, while smoothing over 100 km 

may be appropriate for the Bering Sea where the samples have very high 
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variability, it may not be an appropriate scale for smoothing in the Beaufort 

Sea.  For this reason, and the reason stated in the prior section (that the 

statistical distribution of biomass in the Beaufort is different than that in the 

other seas), the Beaufort dataset was considered separately and a continuous 

surface of benthic biomass samples was generated just for the Beaufort 

biomass samples 

 

 

 Figure 27 – Raw Samples vs. 100 x 100 km grid averages showing the 
loss of small scale detail 
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The biomass contours in the Beaufort Sea show local high levels of 

benthic biomass near the mouth of the Colville River (Figure 29).  These hotspots 

of benthic biomass are products of the spikes in benthic biomass measured in the 

Sea.  The interpolation procedure predicts a high density of benthic biomass in the 

northeastern corner of the map.  This is due to the presence of a few samples with 

medium to high measurements of benthic biomass.  There are insufficient samples 

in this region to have much confidence that the predictions in this region are 

accurate.   

 
 

Figure 28 –Beaufort Sea benthic biomass spatial distribution 
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5.2 TEMPORAL TRENDS OF BENTHIC BIOMASS 

To isolate temporal trends, it is first necessary to find regions with an 

adequate overlap of temporally varying measurements.  The original biomass 

dataset was divided into three time periods to locate areas with overlapping 

temporal data.  The time divisions (1970-1984, 1984-1990, and 1990-1996) were 

chosen because they represent the logical breaks in the collection dates.  By using 

the 100 km x 100 km grid generated previously, cells for which more than three 

samples of any two of the time divisions fell were identified.  This resulted in two 

comparison areas of 200 km x 200 km.  The first was just south of St. Lawrence 

Island (Figure 29a) with twenty-eight samples from 1970-1984 along with thirty-

nine samples from 1984-1990.  The second was located just North of St. 

Lawrence Island (Figure 29b) and contained twenty-one samples from 1970-1984 

and thirty-three samples from 1984-1990.   

A geostatistical technique called block kriging was used to evaluate the 

change in biomass over time for the two regions.  Block kriging is useful when 

the spatial distribution of samples is not as important as the overall measure of 

one sample within a fixed region (Isaaks and Srivastava 1989).  Block kriging was 

used to estimate the total amount of benthic biomass within the square region for 

each time period.  This procedure can be thought of as a weighted average over 

the area, but in actuality the average is found by interpolating a surface of 
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estimated benthic biomass predictions over the area, and then summing all 

predictions.  This method accounts for the spatial distribution of the samples so 

that the clustering of the samples is less of a factor. 

A semivariogram and corresponding model were generated for each time 

division within each comparison area using the methodology described in the 

spatial distribution section.  The summary data about the raster file of predictions 

can provide an understanding of the benthic community over that time period 

within that region.   
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             (b) 

 
Figure 29 –The two comparison areas (a) just north of St. Lawrence Island in the Bering Sea and (b) just south of St. 

Lawrence Island.  Darker brown indicates higher predicted benthic biomass (g/m2)
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5.2.1 Northern Comparison Region 
 In the northern comparison region, there exists an overlapping of benthic 

biomass samples measured in the 1970s and in the 1980s.  The samples from the 

two decades were divided and a prediction surface was calculated for each.  These 

two surfaces represent and estimate the continuous distribution of benthos within 

the region for that decade.  Based on the histogram of these interpolated benthic 

biomass predictions, there does not appear to be a significant difference between 

the benthic biomass distribution in the 1970s compared with the 1980s (Figure 

30).  A two-tailed, unequal variance t Test of all the raw sample points within the 

study region supported this observation.  I concluded that mean benthic biomass 

did not change within the region from 1970 to 1980 (P-value = 0.825). 
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Figure 30 – Benthic community in the Northern Region in the 1970s and 1980s.   
 

5.2.2 Southern Comparison Region 
 A similar procedure was conducted within the southern region with 

temporally overlapping data.  Within this region, data from the 1970s were 

compared with data collected in the 1990s.  The histogram of interpolated benthic 

biomass values shows that, unlike the northern study region, there appears to be a 

significant difference between the distributions of biomass in the 1970 when 

compared to the 1990 (Figure 31).  A large percentage of the area (just under one-

half) within the region has interpolated benthic biomass values greater than 250 

µ 

+σ -σ 
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g/m2 for the 1990s.  A two-tailed, unequal variance t-test of the raw datasets for 

each decade supported this observation.  I concluded that there existed significant 

(P-value = 0.025) difference between the mean benthic biomass in 1970 and 1990, 

with the 1990 biomass being greater.   

 

Figure 31 – Benthic community in the Southern Region in the 1970s and 1990s.   

 

µ 

+σ -σ
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Chapter 6: Conclusions 
 

An extensive effort was put forth to gather all known benthic biomass 

measurements taken within the Western Arctic Ocean.  The result is a 

retrospective (1970-1995) dataset of 1,093 benthic biomass point measurements.  

Data possibly correlated with benthic biomass were also collected to provide 

additional information regarding the spatial distribution of benthic biomass.  

These data include integrated chlorophyll a, depth, and water temperature.  There 

were a total of 2,514 chlorophyll a samples integrated over the water column 

depth, 222 temperature readings at the time of sampling, and depth readings at all 

sample points (based on bathymetry data).  

Geostatistical techniques were applied to these datasets to interpolate the 

continuous spatial distribution of benthos within the Western Arctic Ocean.  The 

best model of benthic biomass over space showed the benthic population 

distribution as depicted in Figure 24.  This figure was developed using up-scaled 

datasets of benthic biomass aggregated on100km square grid cells.  The purpose 

of the up-scaled grid was to soften small scale variability in order to amplify large 

scale trends.  One-hundred kilometers was chosen over 50km, 10km, and 1km 

grid sizes because it provided the appropriate balance of detail with smoothness 

necessary for the purposes of this study. 
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One of the benefits of the geostatistical model was the identification of 

abnormal benthic biomass densities at specific locations.  For example, a benthic 

hotspot, that is where the density of biomass is unusually high in comparison to 

neighboring locations, was identified in Barrow Canyon off the Northwestern 

coast of Alaska.  Benthic cold spots were identified at the outlets of the 

Mackenzie and Yukon Rivers, most likely due to low salinity.  Providing reasons 

for these locations with abnormal benthic biomass, however, was not the within 

the scope of this study.   

The interpolation of benthos was calculated using the correlation between 

separation distance and attribute value difference (autocorrelation) and the 

correlation between benthic biomass and integrated chlorophyll a, depth, and 

water temperature on the collection date.  Scatterplots of benthic biomass and 

these other environmental datasets, however, showed little evidence of 

correlation.  Therefore the primary information used to predict benthic biomass at 

unmeasured locations was the correlation between separation distances and 

attribute value differences as modeled by the semivariogram.   

To investigate temporal trends within the data, two 200 km by 200 km 

locations were identified in which a significant number (n ≥ 20) of benthic 

measurements existed from different decades.  Both areas were in the Bering Sea, 

one was just north of St. Lawrence Island and the other just south.  For each 
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location, the raw samples were divided into their respective decades.  The 

southern region contained measurements from the 1970s and the 1990s and the 

northern region contained measurements from the 1970s and 1980s.   

Using ordinary kriging, benthic biomass was interpolated for each time 

period within each region.  Area averaging of the interpolated biomass surface 

(block kriging) for each decade at each of the two locations gave evidence of long 

term (decadal) upward trend for the southern region and no evidence of long term 

trend for the northern region.  The ability to detect temporal trends in the benthic 

data, however, was weakened by insufficient time series of benthic biomass at 

specific locations.   

One suggestion for future research is that there should be a more 

systematic and coordinated approach for the collection of biological, chemical, 

and physical data within the Western Arctic Ocean.  Establishing specific 

locations where benthos can be measured repeated over time should provide more 

useful information in regards to the temporal trends of benthos.  This research 

shows that benthic biomass is roughly correlated over 150 km (The range of the 

semivariogram for the raw sample points).  Knowing this, it is recommended that 

future explorations collect samples on the range of 50-100 km.  Anything denser 

will only provide unnecessary information; anything less dense will miss spatial 

correlations within benthic biomass  
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Appendix A 
 
Below is the computer code used in this research.  All code was written in Visual 
Basic for Applications for either ArcGIS or EXCEL.  Following the code is a list 
of the specific parameters used for the projected coordinate system.   
 
Chlorophyll Data Processing (EXCEL) 
 
Function cla_m3(station, depth, clam2) 
'calculates the integrated chlorophyl for each depth 
If station = station.Offset(1, 0) Then 
    If station = station.Offset(-1, 0) Then 
    'middle cells 
       cla_m3 = (clam2.Offset(1, 0) + clam2) * (depth.Offset(1, 
0) - depth) / 2 
    Else 
    'first cell 
        cla_m3 = (clam2.Offset(1, 0) + clam2) * (depth.Offset(1, 
0) - 0) / 2 
    End If 
Else 
    If station = station.Offset(-1, 0) Then 
    'last cell 
        cla_m3 = 0 
    Else 
    'if only one cell 
        cla_m3 = "only one value" 
    End If 
End If 
End Function 
 
 
Function SumNumber(station) 
'creates a count column to be used to sum integrated chl numbers  
Dim count As Integer 
count = 1 
If station = station.Offset(1, 0) Then 
    If station = station.Offset(-1, 0) Then 
    'middle cells 
       SumNumber = 0 
    Else 
    'first cell 
        Do While station = station.Offset(1, 0) 
            count = count + 1 
            Set station = station.Offset(1, 0) 
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        Loop 
        SumNumber = count 
    End If 
Else 
    If station = station.Offset(-1, 0) Then 
    'last cell 
        SumNumber = 0 
    Else 
    'if only one cell 
        SumNumber = "only one value" 
    End If 
End If 
End Function 
 
 
Function sumcla(station, cla, count) 
'sums the integrated chl values for each station 
Dim sum 
Sum = 0 
If station = station.Offset(1, 0) Then 
    If station = station.Offset(-1, 0) Then 
    'middle cells 
       sumcla = 0 
    Else 
    'first cell 
        Do While count > 0 
            sum = sum + cla 
            Set cla = cla.Offset(1, 0) 
            count = count - 1 
        Loop 
        sumcla = sum 
    End If 
Else 
    If station = station.Offset(-1, 0) Then 
    'last cell 
        sumcla = 0 
    Else 
    'if only one cell 
        sumcla = "only one value" 
    End If 
End If 
End Function 
End Sub 
 
 
Sub DeleteRows() 
'deletes extra station depths 
Set currentCell = Worksheets("Sheet1").Range("B2") 
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Do While Not IsEmpty(currentCell) 
    Set nextCell = currentCell.Offset(1, 0) 
    If nextCell = currentCell Then 
        If currentCell = currentCell.Offset(-1, 0) Then 
            currentCell.EntireRow.Delete 
        End If 
    Else 
        currentCell.EntireRow.Delete 
    End If 
    Set currentCell = nextCell 
Loop 
End Sub 
 
Sub Insertdepths() 
'to insert sonic depth values 
Dim currentCell As Range, nextCell As Range, currentdepth As 
Range, nextdepth As Range 
Set currentCell = Worksheets("Sheet1").Range("B2") 
Set currentdepth = Worksheets("sheet2").Range("D2") 
Do While Not IsEmpty(currentCell) 
    Set nextCell = currentCell.Offset(1, 0) 
    If nextCell.Value <> currentCell.Value Then 
        nextCell.EntireRow.Insert 
        Worksheets("Sheet1").Range("A" & (currentCell.Row + 1)) = 
currentCell.Offset(0, -1).Value 
        Worksheets("Sheet1").Range("B" & (currentCell.Row + 1)) = 
currentCell.Value 
        Worksheets("Sheet1").Range("C" & (currentCell.Row + 1)) = 
currentdepth.Value 
        Worksheets("Sheet1").Range("D" & (currentCell.Row + 1)) = 
0 
        Set currentdepth = currentdepth.Offset(1, 0) 
    End If 
    Set currentCell = nextCell 
Loop 
End Sub 
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Appendix B 
Specific Parameters of the Projected Coordinate System 
 
Projected Coordinate System:  
Name: Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area 
  Alias:  
  Abbreviation:  
  Remarks:  
Projection: Lambert_Azimuthal_Equal_Area 
Parameters: 
  False_Easting: 2000000.000000 
  False_Northing: 4000000.000000 
  Central_Meridian: -165.000000 
  Latitude_Of_Origin: 90.000000 
Linear Unit: Meter (1.000000) 
Geographic Coordinate System:  
  Name: GCS_Sphere_ARC_INFO 
  Alias:  
  Abbreviation:  
  Remarks:  
  Angular Unit: Degree (0.017453292519943299) 
  Prime Meridian: Greenwich (0.000000000000000000) 
  Datum: D_Sphere_ARC_INFO 
    Spheroid: Sphere_ARC_INFO 
      Semimajor Axis: 6370997.000000000000000000 
      Semiminor Axis: 6370997.000000000000000000 
      Inverse Flattening: 0.000000000000000000 
 
X/Y Domain:  
  Min X: -2324963.836265 
  Min Y: -2794114.084286 
  Max X: 6471129.181847 
  Max Y: 6001978.933826 
  Scale: 244.140625 
 
M Domain:  
  Min: 0.000000 
  Max: 21474.836450 
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  Scale: 100000.000000 
 
Z Domain:  
  Min: 0.000000 
  Max: 21474.836450 
  Scale: 100000.000000 
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Appendix C 

 
Moving Window Statistics (ArcGIS) 
 
'consolidate like attributes 
Public Sub AssignAverageToCell() 
  Dim pDoc As IMxDocument 
  Dim pMap As IMap 
  Dim pPLayer As IFeatureLayer 
  Dim pALayer As IFeatureLayer 
  Dim i As Long, j As Long, k As Long 
  Dim ppro As IStepProgressor 
  Dim dSum As Double, dAvg As Double 
  Dim lAreaValField As Long, lPointValField As Long 
  Dim sAreaValField As String, sPointValField As String 
  Dim lAreaKeyField As Long, lPointKeyField As Long 
  Dim sAreaKeyField As String, sPointKeyField As String 
   
  'Specify field names 
  sAreaValField = "AvgDepth_m" 'Where you will store the average 
  sPointValField = "Estimated_Depth_m" 'the value for each point 
  sAreaKeyField = "OBJECTID" 'Where you will store the average 
  sPointKeyField = "CELLID50" 'the value for each point 
   
   
  Set pDoc = ThisDocument 
  Set pMap = pDoc.FocusMap 
   
  Set pPLayer = pMap.Layer(0) 'point layer 
  Set pALayer = pMap.Layer(1) 'area layer 
   
  Dim pFCursor As IFeatureCursor 
  Dim pAFeat As IFeature 
  Set pFCursor = pALayer.Search(Nothing, False) 
  Set pAFeat = pFCursor.NextFeature 
   
  'Get the fields 
  lAreaValField = 
pALayer.FeatureClass.Fields.FindField(sAreaValField) 
  lPointValField = 
pPLayer.FeatureClass.Fields.FindField(sPointValField) 
  lAreaKeyField = 
pALayer.FeatureClass.Fields.FindField(sAreaKeyField) 
  lPointKeyField = 
pPLayer.FeatureClass.Fields.FindField(sPointKeyField) 
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  If lAreaValField = -1 Or lPointValField = -1 Or lAreaKeyField = 
-1 Or lPointKeyField = -1 Then 
    MsgBox "Invalid Field Name" 
    Exit Sub 
  End If 
   
  'Get the editor 
  Dim pEditor As IEditor 
  Dim pUID As New UID 
  pUID = "esriCore.Editor" 
  Set pEditor = Application.FindExtensionByCLSID(pUID) 
  pEditor.StartOperation 
   
  'Status bar 
  Set ppro = Application.StatusBar.ProgressBar 
  Dim pTrackCancel As ITrackCancel 'you can hit Esc to quit 
  Set pTrackCancel = New CancelTracker 
  With ppro 
    .MinRange = 0 
    .MaxRange = pALayer.FeatureClass.FeatureCount(Nothing) 
    .StepValue = 1 
    .Position = 0 
    .Show 
  End With 
   
  Dim pQF As IQueryFilter 
  Dim pPCursor As IFeatureCursor 
  Dim pPFeat As IFeature 
  Dim pRelatedFeats As esriCore.ISet 
  Dim lNumFeats As Long 
  Dim lID As Long 
   
  Do Until pAFeat Is Nothing 
    If Not pTrackCancel.Continue Then 
      ppro.Message = "Cancelling" 
      pEditor.StopOperation "bleh" 
      ppro.Hide 
      Exit Sub 
    End If 
     
    dSum = 0 
    lNumFeats = 0 
    'Get the ID of the current area 
    If Not IsNull(pAFeat.Value(lAreaKeyField)) Then 
      lID = pAFeat.Value(lAreaKeyField) 
      'Create the queryfilter 
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      Set pQF = New QueryFilter 
      pQF.WhereClause = sPointKeyField & " = " & lID 
      'Get the related features and sum 
      Set pPCursor = pPLayer.Search(pQF, False) 
      Set pPFeat = pPCursor.NextFeature 
      Do Until pPFeat Is Nothing 
        If Not IsNull(pPFeat.Value(lPointValField)) And 
pPFeat.OID <> 2514 And pPFeat.OID <> 2499 Then 
          dSum = dSum + pPFeat.Value(lPointValField) 
          lNumFeats = lNumFeats + 1 
        pAFeat.Store 
        End If 
        Set pPFeat = pPCursor.NextFeature 
        pAFeat.Store 
      Loop 
    End If 
     
    If lNumFeats > 0 Then 
      dAvg = dSum / lNumFeats 
    Else 
      dAvg = 0 
    End If 
 
    pAFeat.Value(lAreaValField) = dAvg 'lNumFeats 
     
     
    Set pAFeat = pFCursor.NextFeature 
    'Progress bar 
    ppro.Step 
    j = j + 1 
    ppro.Message = j & " of " & ppro.MaxRange 
  Loop 
   
  ppro.Message = "Finishing Edits (please wait)" 
  pEditor.StopOperation ("bleh") 
   
  ppro.Hide 
End Sub 
 
'spatial overlap 
Public Sub SpatialOverlap() 
  Dim pDoc As IMxDocument 
  Dim pMap As IMap 
  Dim pPLayer As IFeatureLayer 
  Dim pALayer As IFeatureLayer 
   
  Set pDoc = ThisDocument 
  Set pMap = pDoc.FocusMap 
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  Set pPLayer = pMap.Layer(0) 
  Set pALayer = pMap.Layer(1) 
   
  Dim pFCursor As IFeatureCursor 
  Dim pAFeat As IFeature 
  Dim pSF As ISpatialFilter 
  ' assign cell value to points 
  Set pFCursor = pALayer.Search(Nothing, False) 
  Set pAFeat = pFCursor.NextFeature 
   
  Dim pEditor As IEditor 
  Dim pUID As New UID 
  pUID = "esriCore.Editor" 
  Set pEditor = Application.FindExtensionByCLSID(pUID) 
  pEditor.StartOperation 
   
  Dim pPCursor As IFeatureCursor 
  Dim pPFeat As IFeature 
  Dim j As Long 
   
  'Status bar 
  Dim ppro As IStepProgressor 
  Set ppro = Application.StatusBar.ProgressBar 
  Dim pTrackCancel As ITrackCancel 'you can hit Esc to quit 
  Set pTrackCancel = New CancelTracker 
  With ppro 
    .MinRange = 0 
    .MaxRange = pALayer.FeatureClass.FeatureCount(Nothing) 
    .StepValue = 1 
    .Position = 0 
    .Show 
  End With 
   
   
  Do Until pAFeat Is Nothing 
    Set pSF = New SpatialFilter 
    With pSF 
    Set .Geometry = pAFeat.Shape 
      .SpatialRel = esriSpatialRelIntersects 
    End With 
     
    Set pPCursor = pPLayer.Search(pSF, False) 
    Set pPFeat = pPCursor.NextFeature 
    Do Until pPFeat Is Nothing 
      pPFeat.Value(12) = pAFeat.Value(0) 
      pPFeat.Store 
      Set pPFeat = pPCursor.NextFeature 
    Loop 
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    Set pAFeat = pFCursor.NextFeature 
     
    'Progress bar 
    ppro.Step 
    j = j + 1 
    ppro.Message = j & " of " & ppro.MaxRange 
  Loop 
   
  ppro.Message = "Finishing Edits (please wait)" 
  pEditor.StopOperation ("bleh") 
   
  ppro.Hide 
   
  pEditor.StopOperation ("bleh") 
End Sub 
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