4,267 research outputs found

    Ion Beams in Multi-Species Plasma

    Full text link
    Argon and xenon ion velocity distribution functions are measured in Ar-He, Ar-Xe, and Xe-He expanding helicon plasmas to determine if ion beam velocity is enhanced by the presence of lighter ions. Contrary to observations in mixed gas sheath experiments, we find that adding a lighter ion does not increase the ion beam speed. The predominant effect is a reduction of ion beam velocity consistent with increased drag arising from increased gas pressure under all conditions: constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for the acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in expanding helicon plasmas

    Confocal Laser Induced Fluorescence with Comparable Spatial Localization to the Conventional Method

    Full text link
    We present measurements of ion velocity distributions obtained by laser induced fluorescence (LIF) using a single viewport in an argon plasma. A patent pending design, which we refer to as the confocal fluorescence telescope, combines large objective lenses with a large central obscuration and a spatial filter to achieve high spatial localization along the laser injection direction. Models of the injection and collection optics of the two assemblies are used to provide a theoretical estimate of the spatial localization of the confocal arrangement, which is taken to be the full width at half maximum of the spatial optical response. The new design achieves approximately 1.4 mm localization at a focal length of 148.7 mm, improving on previously published designs by an order of magnitude and approaching the localization achieved by the conventional method. The confocal method, however, does so without requiring a pair of separated, perpendicular optical paths. The confocal technique therefore eases the two window access requirement of the conventional method, extending the application of LIF to experiments where conventional LIF measurements have been impossible or difficult, or where multiple viewports are scarce

    Spatial Structure of Ion Beams in an Expanding Plasma

    Full text link
    We report spatially resolved perpendicular and parallel, to the magnetic field, ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ≈ 8000 m/s flowing downstream and confined to the center of the discharge. The ion beam is measurable for tens of centimeters along the expansion axis before the LIF signal fades, likely a result of metastable quenching of the beam ions. The parallel ion beam velocity slows in agreement with expectations for the measured parallel electric field. The perpendicular IVDFs show an ion population with a radially outward flow that increases with distance from the plasma axis. Structures aligned to the expanding magnetic field appear in the DC electric field, the electron temperature, and the plasma density in the plasma plume. These measurements demonstrate that at least two-dimensional and perhaps fully three-dimensional models are needed to accurately describe the spontaneous acceleration of ion beams in expanding plasmas

    Results and recommendations from an intercomparison of six Hygroscopicity-TDMA systems

    Get PDF
    The performance of six custom-built Hygrocopicity-Tandem Differential Mobility Analyser (H-TDMA) systems was investigated in the frame of an international calibration and intercomparison workshop held in Leipzig, February 2006. The goal of the workshop was to harmonise H-TDMA measurements and develop recommendations for atmospheric measurements and their data evaluation. The H-TDMA systems were compared in terms of the sizing of dry particles, relative humidity (RH) uncertainty, and consistency in determination of number fractions of different hygroscopic particle groups. The experiments were performed in an air-conditioned laboratory using ammonium sulphate particles or an external mixture of ammonium sulphate and soot particles. The sizing of dry particles of the six H-TDMA systems was within 0.2 to 4.2% of the selected particle diameter depending on investigated size and individual system. Measurements of ammonium sulphate aerosol found deviations equivalent to 4.5% RH from the set point of 90% RH compared to results from previous experiments in the literature. Evaluation of the number fraction of particles within the clearly separated growth factor modes of a laboratory generated externally mixed aerosol was done. The data from the H-TDMAs was analysed with a single fitting routine to investigate differences caused by the different data evaluation procedures used for each H-TDMA. The differences between the H-TDMAs were reduced from +12/-13% to +8/-6% when the same analysis routine was applied. We conclude that a common data evaluation procedure to determine number fractions of externally mixed aerosols will improve the comparability of H-TDMA measurements. It is recommended to ensure proper calibration of all flow, temperature and RH sensors in the systems. It is most important to thermally insulate the aerosol humidification unit and the second DMA and to monitor these temperatures to an accuracy of 0.2 degrees C. For the correct determination of external mixtures, it is necessary to take into account size-dependent losses due to diffusion in the plumbing between the DMAs and in the aerosol humidification unit.Peer reviewe

    Orthographic vs. morphological incomplete neutralization effects

    Get PDF
    This study, following up on work on Dutch by Warner, Jongman, Sereno, and Kemps (2004. Journal of Phonetics, 32, 251–276), investigates the influence of orthographic distinctions and underlying morphological distinctions on the small sub-phonemic durational differences that have been called incomplete neutralization. One part of the previous work indicated that an orthographic geminate/singleton distinction could cause speakers to produce an incomplete neutralization effect. However, one interpretation of the materials in that experiment is that they contain an underlying difference in the phoneme string at the level of concatenation of morphemes, rather than just an orthographic difference. Thus, the previous effect might simply be another example of incomplete neutralization of a phonemic distinction. The current experiment, also on Dutch, uses word pairs which have the same underlying morphological contrast, but do not differ in orthography. These new materials show no incomplete neutralization, and thus support the hypothesis that orthography, but not underlying morphological differences, can cause incomplete neutralization effects

    Flux tubes and the type-I/type-II transition in a superconductor coupled to a superfluid

    Full text link
    We analyze magnetic flux tubes at zero temperature in a superconductor that is coupled to a superfluid via both density and gradient (``entrainment'') interactions. The example we have in mind is high-density nuclear matter, which is a proton superconductor and a neutron superfluid, but our treatment is general and simple, modeling the interactions as a Ginzburg-Landau effective theory with four-fermion couplings, including only s-wave pairing. We numerically solve the field equations for flux tubes with an arbitrary number of flux quanta, and compare their energies. This allows us to map the type-I/type-II transition in the superconductor, which occurs at the conventional kappa = 1/sqrt(2) if the condensates are uncoupled. We find that a density coupling between the condensates raises the critical kappa and, for a sufficiently high neutron density, resolves the type-I/type-II transition line into an infinite number of bands corresponding to ``type-II(n)'' phases, in which n, the number of quanta in the favored flux tube, steps from 1 to infinity. For lower neutron density, the coupling creates spinodal regions around the type-I/type-II boundary, in which metastable flux configurations are possible. We find that a gradient coupling between the condensates lowers the critical kappa and creates spinodal regions. These exotic phenomena may not occur in nuclear matter, which is thought to be deep in the type-II region, but might be observed in condensed matter systems.Comment: 14 pages, improved discussion of the effects of varying the neutron/proton condensate ratio; added reference

    High resolution evidence for the Garrett-Munk spectrum of stratospheric gravity waves

    Get PDF
    Vertical profiles of scalar horizontal winds have been measured at high resolution (10 m) in the 13 to 37 km region of the stratosphere. This resolution (at that range of altitude) represents the state-of-the-art, and is unique. The technique used smoke trails laid by rockets in the stratosphere, and were taken by AFGL at Wallops Island, VA, White Sands Missile Range, NM, and Ft. Churchill, Canada, in the 1977-78 time period. Two or three cameras were used to give the time-lapse photographs. The goal was to ascertain whether or not the internal waves of the stratosphere behave consistently with the Garrett-Munk model which was originally created for oceanic internal waves. Five profiles of horizontal wind are presented. It is concluded: (1) stratospheric internal waves obey the Garrett-Munk model for vertical wave numbers; (2) there is not statistically significant evidence for a break in the curve at high wave numbers when due allowance is made for aliasing effects; and (3) the power density level of the spectra are almost equal on a log-log scale in spite of the difference in time, season, and geographical location

    Evaluation of the neonatal Sequential Organ Failure Assessment and mortality risk in preterm infants with late-onset infection

    Get PDF
    Importance: Infection in neonates remains a substantial problem. Advances for this population are hindered by the absence of a consensus definition for sepsis. In adults, the Sequential Organ Failure Assessment (SOFA) operationalizes mortality risk with infection and defines sepsis. The generalizability of the neonatal SOFA (nSOFA) for neonatal late-onset infection-related mortality remains unknown. Objective: To determine the generalizability of the nSOFA for neonatal late-onset infection-related mortality across multiple sites. Design, Setting, and Participants: A multicenter retrospective cohort study was conducted at 7 academic neonatal intensive care units between January 1, 2010, and December 31, 2019. Participants included 653 preterm (\u3c33 weeks) very low-birth-weight infants. Exposures: Late-onset (\u3e72 hours of life) infection including bacteremia, fungemia, or surgical peritonitis. Main Outcomes and Measures: The primary outcome was late-onset infection episode mortality. The nSOFA scores from survivors and nonsurvivors with confirmed late-onset infection were compared at 9 time points (T) preceding and following event onset. Results: In the 653 infants who met inclusion criteria, median gestational age was 25.5 weeks (interquartile range, 24-27 weeks) and median birth weight was 780 g (interquartile range, 638-960 g). A total of 366 infants (56%) were male. Late-onset infection episode mortality occurred in 97 infants (15%). Area under the receiver operating characteristic curves for mortality in the total cohort ranged across study centers from 0.71 to 0.95 (T0 hours), 0.77 to 0.96 (T6 hours), and 0.78 to 0.96 (T12 hours), with utility noted at all centers and in aggregate. Using the maximum nSOFA score at T0 or T6, the area under the receiver operating characteristic curve for mortality was 0.88 (95% CI, 0.84-0.91). Analyses stratified by sex or Gram-stain identification of pathogen class or restricted to infants born at less than 25 weeks\u27 completed gestation did not reduce the association of the nSOFA score with infection-related mortality. Conclusions and Relevance: The nSOFA score was associated with late-onset infection mortality in preterm infants at the time of evaluation both in aggregate and in each center. These findings suggest that the nSOFA may serve as the foundation for a consensus definition of sepsis in this population

    Evidence for Electron Energization Accompanying Spontaneous Formation of Ion Acceleration Regions in Expanding Plasmas

    Full text link
    We report experiments conducted in an expanding argon plasma generated in the inductive mode of a helicon source in the Hot hELIcon eXperiment–Large Experiment on Instabilities and Anisotropies facility. As the neutral gas pressure increases, the supersonic ion acceleration weakens. Increasing neutral pressure also alters the radial profile of electron temperature, density, and plasma potential upstream of the plasma expansion region. Langmuir probe measurements of the electron energy probability function (EEPF) show that heating of electrons at the plasma edge by RF fields diminishes with increasing gas pressure, yielding a plasma with a centrally peaked electron temperature, and flat potential profiles at higher neutral pressures. For neutral pressures at which ion acceleration regions develop in the expanding plasma plume, EEPFs reveal electrons with two temperature components

    Synthetic RNA Silencing of Actinorhodin Biosynthesis in Streptomyces coelicolor A3(2)

    Get PDF
    We demonstrate the first application of synthetic RNA gene silencers in Streptomyces coelicolor A3(2). Peptide nucleic acid and expressed antisense RNA silencers successfully inhibited actinorhodin production. Synthetic RNA silencing was target-specific and is a new tool for gene regulation and metabolic engineering studies in Streptomyces.Peer reviewe
    corecore