4,666 research outputs found
Ion Beams in Multi-Species Plasma
Argon and xenon ion velocity distribution functions are measured in Ar-He, Ar-Xe, and Xe-He expanding helicon plasmas to determine if ion beam velocity is enhanced by the presence of lighter ions. Contrary to observations in mixed gas sheath experiments, we find that adding a lighter ion does not increase the ion beam speed. The predominant effect is a reduction of ion beam velocity consistent with increased drag arising from increased gas pressure under all conditions: constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for the acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in expanding helicon plasmas
Spatial Structure of Ion Beams in an Expanding Plasma
We report spatially resolved perpendicular and parallel, to the magnetic field, ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ≈ 8000 m/s flowing downstream and confined to the center of the discharge. The ion beam is measurable for tens of centimeters along the expansion axis before the LIF signal fades, likely a result of metastable quenching of the beam ions. The parallel ion beam velocity slows in agreement with expectations for the measured parallel electric field. The perpendicular IVDFs show an ion population with a radially outward flow that increases with distance from the plasma axis. Structures aligned to the expanding magnetic field appear in the DC electric field, the electron temperature, and the plasma density in the plasma plume. These measurements demonstrate that at least two-dimensional and perhaps fully three-dimensional models are needed to accurately describe the spontaneous acceleration of ion beams in expanding plasmas
Results and recommendations from an intercomparison of six Hygroscopicity-TDMA systems
The performance of six custom-built Hygrocopicity-Tandem Differential Mobility Analyser (H-TDMA) systems was investigated in the frame of an international calibration and intercomparison workshop held in Leipzig, February 2006. The goal of the workshop was to harmonise H-TDMA measurements and develop recommendations for atmospheric measurements and their data evaluation. The H-TDMA systems were compared in terms of the sizing of dry particles, relative humidity (RH) uncertainty, and consistency in determination of number fractions of different hygroscopic particle groups. The experiments were performed in an air-conditioned laboratory using ammonium sulphate particles or an external mixture of ammonium sulphate and soot particles. The sizing of dry particles of the six H-TDMA systems was within 0.2 to 4.2% of the selected particle diameter depending on investigated size and individual system. Measurements of ammonium sulphate aerosol found deviations equivalent to 4.5% RH from the set point of 90% RH compared to results from previous experiments in the literature. Evaluation of the number fraction of particles within the clearly separated growth factor modes of a laboratory generated externally mixed aerosol was done. The data from the H-TDMAs was analysed with a single fitting routine to investigate differences caused by the different data evaluation procedures used for each H-TDMA. The differences between the H-TDMAs were reduced from +12/-13% to +8/-6% when the same analysis routine was applied. We conclude that a common data evaluation procedure to determine number fractions of externally mixed aerosols will improve the comparability of H-TDMA measurements. It is recommended to ensure proper calibration of all flow, temperature and RH sensors in the systems. It is most important to thermally insulate the aerosol humidification unit and the second DMA and to monitor these temperatures to an accuracy of 0.2 degrees C. For the correct determination of external mixtures, it is necessary to take into account size-dependent losses due to diffusion in the plumbing between the DMAs and in the aerosol humidification unit.Peer reviewe
Confocal Laser Induced Fluorescence with Comparable Spatial Localization to the Conventional Method
We present measurements of ion velocity distributions obtained by laser induced fluorescence (LIF) using a single viewport in an argon plasma. A patent pending design, which we refer to as the confocal fluorescence telescope, combines large objective lenses with a large central obscuration and a spatial filter to achieve high spatial localization along the laser injection direction. Models of the injection and collection optics of the two assemblies are used to provide a theoretical estimate of the spatial localization of the confocal arrangement, which is taken to be the full width at half maximum of the spatial optical response. The new design achieves approximately 1.4 mm localization at a focal length of 148.7 mm, improving on previously published designs by an order of magnitude and approaching the localization achieved by the conventional method. The confocal method, however, does so without requiring a pair of separated, perpendicular optical paths. The confocal technique therefore eases the two window access requirement of the conventional method, extending the application of LIF to experiments where conventional LIF measurements have been impossible or difficult, or where multiple viewports are scarce
Flux tubes and the type-I/type-II transition in a superconductor coupled to a superfluid
We analyze magnetic flux tubes at zero temperature in a superconductor that
is coupled to a superfluid via both density and gradient (``entrainment'')
interactions. The example we have in mind is high-density nuclear matter, which
is a proton superconductor and a neutron superfluid, but our treatment is
general and simple, modeling the interactions as a Ginzburg-Landau effective
theory with four-fermion couplings, including only s-wave pairing. We
numerically solve the field equations for flux tubes with an arbitrary number
of flux quanta, and compare their energies. This allows us to map the
type-I/type-II transition in the superconductor, which occurs at the
conventional kappa = 1/sqrt(2) if the condensates are uncoupled.
We find that a density coupling between the condensates raises the critical
kappa and, for a sufficiently high neutron density, resolves the type-I/type-II
transition line into an infinite number of bands corresponding to
``type-II(n)'' phases, in which n, the number of quanta in the favored flux
tube, steps from 1 to infinity. For lower neutron density, the coupling creates
spinodal regions around the type-I/type-II boundary, in which metastable flux
configurations are possible. We find that a gradient coupling between the
condensates lowers the critical kappa and creates spinodal regions. These
exotic phenomena may not occur in nuclear matter, which is thought to be deep
in the type-II region, but might be observed in condensed matter systems.Comment: 14 pages, improved discussion of the effects of varying the
neutron/proton condensate ratio; added reference
Diffractive effects in spin-flip pp amplitudes and predictions for relativistic energies
We analyze the diffractive (Pomeron) contribution to pp spin-flip amplitude
and discuss the possible scenarios for energies available at the Relativistic
Heavy-Ion Collider (RHIC). In particular, we show that RHIC data will be
instrumental in assessing the real contribution of diffraction to spin
amplitudes.Comment: 11 pages, 12 Encapsulated PostScript files, LaTeX2e use
Synthetic RNA Silencing of Actinorhodin Biosynthesis in Streptomyces coelicolor A3(2)
We demonstrate the first application of synthetic RNA gene silencers in Streptomyces coelicolor A3(2). Peptide nucleic acid and expressed antisense RNA silencers successfully inhibited actinorhodin production. Synthetic RNA silencing was target-specific and is a new tool for gene regulation and metabolic engineering studies in Streptomyces.Peer reviewe
Decoherent Histories Approach to the Arrival Time Problem
We use the decoherent histories approach to quantum theory to compute the
probability of a non-relativistic particle crossing during an interval of
time. For a system consisting of a single non-relativistic particle, histories
coarse-grained according to whether or not they pass through spacetime regions
are generally not decoherent, except for very special initial states, and thus
probabilities cannot be assigned. Decoherence may, however, be achieved by
coupling the particle to an environment consisting of a set of harmonic
oscillators in a thermal bath. Probabilities for spacetime coarse grainings are
thus calculated by considering restricted density operator propagators of the
quantum Brownian motion model. We also show how to achieve decoherence by
replicating the system times and then projecting onto the number density of
particles that cross during a given time interval, and this gives an
alternative expression for the crossing probability. The latter approach shows
that the relative frequency for histories is approximately decoherent for
sufficiently large , a result related to the Finkelstein-Graham-Hartle
theorem.Comment: 42 pages, plain Te
Testing the Principle of Equivalence by Solar Neutrinos
We discuss the possibility of testing the principle of equivalence with solar
neutrinos. If there exists a violation of the equivalence principle quarks and
leptons with different flavors may not universally couple with gravity. The
method we discuss employs a quantum mechanical phenomenon of neutrino
oscillation to probe into the non-universality of the gravitational couplings
of neutrinos. We develop an appropriate formalism to deal with neutrino
propagation under the weak gravitational fields of the sun in the presence of
the flavor mixing. We point out that solar neutrino observation by the next
generation water Cherenkov detectors can improve the existing bound on
violation of the equivalence principle by 3-4 orders of magnitude if the
nonadiabatic Mikheyev-Smirnov-Wolfenstein mechanism is the solution to the
solar neutrino problem.Comment: Latex, 17 pages + 6 uuencoded postscript figures, KEK-TH-396,
TMUP-HEL-9402 (unnecessary one reference was removed
Adaptable-radius, time-orbiting magnetic ring trap for Bose-Einstein condensates
We theoretically investigate an adjustable-radius magnetic storage ring for
laser-cooled and Bose-condensed atoms. Additionally, we discuss a novel
time-dependent variant of this and other ring traps. Time-orbiting ring traps
provide a high optical access method for spin-flip loss prevention near a
storage ring's circular magnetic field zero. Our scalable storage ring will
allow one to probe the fundamental limits of condensate Sagnac interferometry.Comment: 5 pages, 3 figures. accepted in J Phys
- …
