18 research outputs found
Chronic Glaucoma Induced in Rats by a Single Injection of Fibronectin-Loaded PLGA Microspheres: IOP-Dependent and IOP-Independent Neurodegeneration
To evaluate a new animal model of chronic glaucoma induced using a single injection of fibronectin-loaded biodegradable PLGA microspheres (Ms) to test prolonged therapies. 30 rats received a single injection of fibronectin-PLGA-Ms suspension (MsF) in the right eye, 10 received non-loaded PLGA-Ms suspension (Control), and 17 were non-injected (Healthy). Follow-up was performed (24 weeks), evaluating intraocular pressure (IOP), optical coherence tomography (OCT), histology and electroretinography. The right eyes underwent a progressive increase in IOP, but only induced cohorts reached hypertensive values. The three cohorts presented a progressive decrease in ganglion cell layer (GCL) thickness, corroborating physiological age-related loss of ganglion cells. Injected cohorts (MsF > Control) presented greater final GCL thickness. Histological exams explain this paradox: the MsF cohort showed lower ganglion cell counts but higher astrogliosis and immune response. A sequential trend of functional damage was recorded using scotopic electroretinography (MsF > Control > Healthy). It seems to be a function–structure correlation: in significant astrogliosis, early functional damage can be detected by electroretinography, and structural damage can be detected by histological exams but not by OCT. Males presented higher IOP and retinal and GCL thicknesses and lower electroretinography. A minimally invasive chronic glaucoma model was induced by a single injection of biodegradable Ms
Recommended from our members
HGAL-a Germinal Center Specific Protein, Enhances B-Cell Receptor Signaling by Activation of Syk, Leading to Follicular Lymphoproliferation
Abstract
Abstract 584
The Human Germinal center Associated Lymphoma (HGAL) gene is exclusively expressed in germinal center (GC) B-lymphocytes and GC-derived lymphomas. In patients with diffuse large B-cell lymphomas (DLBCL), HGAL expression identifies a subgroup of patients with biologically distinct tumors associated with improved survival. Our previous in vitro studies demonstrated that HGAL decreases spontaneous and chemoattractant-induced cell motility by activating the RhoA signaling pathway and by directly interacting and augmenting F-actin and myosin II binding. However, the major function of HGAL in GC lymphocytes remains largely unknown. Based on our previous observation of tyrosine phosphorylation of a modified ITAM motif in the HGAL by Lyn, we hypothesized that HGAL may be involved in B-cell receptor (BCR) signaling. Indeed, following BCR stimulation of two GCB-like lymphoma cell lines (Raji and VAL), we observed marked reduction of Syk, Btk and PLCγ phosphorylation upon knockdown of endogenous HGAL by specific but not control siRNAs. Concordantly, HGAL knockdown in BCR-stimulated Raji cells reduced Ca2+ mobilization and decreased NFAT transcriptional activity as analyzed by a luciferase reporter assay. HGAL expression in the BCR-stimulated HBL1 lymphoma cell line (lacking endogenous HGAL protein) resulted in increased Syk, Btk and PLCγ phosphorylation. Syk plays a major role in coupling BCR activation to downstream effectors. Endogenous HGAL was detected in immunoprecipitates of endogenous Syk and vice versa. Nanoscope microscopy studies confirmed co-localization of HGAL and Syk proteins in cell membranes, which was enhanced following BCR stimulation. In BCR-stimulated cells, Syk kinase activity was markedly increased following addition of HGAL protein as measured by an in vitro Syk kinase activity assay. To comprehensively examine HGAL effects on immune system and BCR signaling, we generated a transgenic mouse model in which HGAL is expressed under the control of the mouse Ly-6E.1 promoter in Sca1+ hematopoietic stem cells and progenitors of C57BL/6 × CBA mice. The Sca1-HGAL transgenic mice showed normal embryonic and post natal development, and at 8 weeks of age demonstrated normal lymphoid development without any significant changes in the major hematopoietic compartments (bone marrow (BM), spleen, thymus and peripheral lymph nodes) and in peripheral blood. They also exhibited normal GC development in response to a T-cell dependent antigen immunization. In contrast, at 12 months of age the Sca1-HGAL mice developed a decrease in BM immature B-cells at the expense of recirculating B-cells (B220+IgDhi) compared to the age-matched normal littermates, suggesting a defect in B-cell lymphopoiesis. All the Sca1-HGAL transgenic mice became ill from approximately 12 months of age and all died between 12 to 22 months of age with statistically shorter survival as compared to the wild type controls. Analysis of these animals showed massive splenomegaly with marked white pulp hyperplasia and presence of multiple, frequently contiguous nodules predominantly composed of polyclonal follicular (B220+CD21intCD23hi) B lymphocytes. Extra-lymphatic infiltration by similar B lymphocytes was observed in the liver, lungs and kidneys of Sca1-HGAL mice with advanced disease. IgG isotype titers in these animals tended to be higher than in the wild-type controls, reaching a statistically significant difference for the IgG1 isotype. Follicular hyperplasia in the Sca1-HGAL transgenic mice is likely attributable to increased RhoA activation and enhanced BCR signalling manifested by increased Syk phosphorylation, Ca2+ mobilization and in vitro B cell proliferation following BCR stimulation, in agreement with similar data observed in human DLBCL cell lines expressing HGAL. Gene expression profiling of lymphoid tissues confirmed significantly enhanced BCR signalling and RhoA pathway activation in Sca1-HGAL transgenic mice, corresponding to similar pathway activation in human lymphoma cell lines over-expressing HGAL. Overall, our findings demonstrate that HGAL, specifically expressed in GC B cells, enhances responsiveness to antigens by stimulating Syk kinase activity that without appropriate regulation may lead to lymphoproliferation. Further studies are needed to examine the role of HGAL in the pathogenesis of GC-derived lymphomas.
Disclosures:
No relevant conflicts of interest to declare
Infection Exposure Is a Causal Factor in B-cell Precursor Acute Lymphoblastic Leukemia as a Result of Pax5-Inherited Susceptibility
Earlier in the past century, infections were regarded as the most likely cause of childhood B-cell precursor acute lymphoblastic leukemia (pB-ALL). However, there is a lack of relevant biologic evidence supporting this hypothesis. We present in vivo genetic evidence mechanistically connecting inherited susceptibility to pB-ALL and postnatal infections by showing that pB-ALL was initiated in Pax5 heterozygous mice only when they were exposed to common pathogens. Strikingly, these murine pB-ALLs closely resemble the human disease. Tumor exome sequencing revealed activating somatic, nonsynonymous mutations of Jak3 as a second hit. Transplantation experiments and deep sequencing suggest that inactivating mutations in Pax5 promote leukemogenesis by creating an aberrant progenitor compartment that is susceptible to malignant transformation through accumulation of secondary Jak3 mutations. Thus, treatment of Pax5(+/-) leukemic cells with specific JAK1/3 inhibitors resulted in increased apoptosis. These results uncover the causal role of infection in pB-ALL development
Loss of Pax5 exploits Sca1-BCR-ABLp190 susceptibility to confer the metabolic shift essential for pB-ALL
Preleukemic clones carrying BCR-ABLp190 oncogenic lesions are found in neonatal cord blood, where the majority of preleukemic carriers do not convert into precursor B-cell acute lymphoblastic leukemia (pB-ALL). However, the critical question of how these preleukemic cells transform into pB-ALL remains undefined. Here we model a BCR-ABLp190 preleukemic state and show that limiting BCR-ABLp190 expression to hematopoietic stem/progenitor cells (HS/PC) in mice (Sca1-BCR-ABLp190) causes pB-ALL at low penetrance, which resembles the human disease. pB-ALL blast cells were BCR-ABL-negative and transcriptionally similar to pro-B/pre-B cells, suggesting disease onset upon reduced Pax5 functionality. Consistent with this, double Sca1-BCR-ABLp190+Pax5+/- mice developed pB-ALL with shorter latencies, 90% incidence, and accumulation of genomic alterations in the remaining wild-type Pax5 allele. Mechanistically, the Pax5-deficient leukemic pro-B cells exhibited a metabolic switch towards increased glucose utilization and energy metabolism. Transcriptome analysis revealed that metabolic genes (IDH1, G6PC3, GAPDH, PGK1, MYC, ENO1, ACO1) were upregulated in Pax5-deficient leukemic cells, and a similar metabolic signature could be observed in human leukemia. Our studies unveil the first in vivo evidence that the combination between Sca1-BCR-ABLp190 and metabolic reprogramming imposed by reduced Pax5 expression is sufficient for pB-ALL development. These findings might help to prevent conversion of BCR-ABLp190 preleukemic cells
Infectious stimuli promote malignant B-cell acute lymphoblastic leukemia in the absence of AID
The prerequisite to prevent childhood B-cell acute lymphoblastic leukemia (B-ALL) is to decipher its etiology. The current model suggests that infection triggers B-ALL development through induction of activation-induced cytidine deaminase (AID; also known as AICDA) in precursor B-cells. This evidence has been largely acquired through the use of ex vivo functional studies. However, whether this mechanism governs native non-transplant B-ALL development is unknown. Here we show that, surprisingly, AID genetic deletion does not affect B-ALL development in Pax5-haploinsufficient mice prone to B-ALL upon natural infection exposure. We next test the effect of premature AID expression from earliest pro-B-cell stages in B-cell transformation. The generation of AID off-target mutagenic activity in precursor B-cells does not promote B-ALL. Likewise, known drivers of human B-ALL are not preferentially targeted by AID. Overall these results suggest that infections promote B-ALL through AID-independent mechanisms, providing evidence for a new model of childhood B-ALL development
Infection Exposure Promotes ETV6-RUNX1 Precursor B-cell Leukemia via Impaired H3K4 Demethylases
ETV6-RUNX1 is associated with the most common subtype of childhood leukemia. As few ETV6-RUNX1 carriers develop precursor B cell acute lymphocytic leukemia (pB-ALL), the underlying genetic basis for development of full-blown leukemia remains to be identified, but the appearance of leukemia cases in time-space clusters keeps infection as a potential causal factor. Here we present in vivo genetic evidence mechanistically connecting preleukemic ETV6-RUNX1 expression in hematopoetic stem cells/peripheral cells (HSC/PC) and postnatal infections for human-like pB-ALL. In our model, ETV6-RUNX1 conferred a low risk of developing pB-ALL after exposure to common pathogens, corroborating the low incidence observed in humans. Murine preleukemic ETV6-RUNX1 pro/preB cells showed high Rag1/2 expression, known for human ETV6-RUNX1 pB-ALL. Murine and human ETV6-RUNX1 pB-ALL revealed recurrent genomic alterations, with a relevant proportion affecting genes of the lysine demethylase (KDM) family. KDM5C loss-of-function resulted in increased levels of H3K4me3, which co-precipitated with RAG2 in a human cell line model, laying the molecular basis for recombination activity. We conclude that alterations of KDM family members represent a disease-driving mechanism and an explanation for RAG off-target cleavage observed in humans. Our results explain the genetic basis for clonal evolution of an ETV6-RUNX1 preleukemic clone to pB-ALL after infection exposure and offer the possibility of novel therapeutic approaches
Characteristics, complications and outcomes among 1549 patients hospitalised with COVID-19 in a secondary hospital in Madrid, Spain: a retrospective case series study
Objectives To describe demographic, clinical, radiological and laboratory characteristics, as well as outcomes, of patients admitted for COVID-19 in a secondary hospital.Design and setting Retrospective case series of sequentially hospitalised patients with confirmed SARS-CoV-2, at Infanta Leonor University Hospital (ILUH) in Madrid, Spain.Participants All patients attended at ILUH testing positive to reverse transcriptase-PCR on nasopharyngeal swabs and diagnosed with COVID-19 between 1 March 2020 and 28 May 2020.Results A total of 1549 COVID-19 cases were included (median age 69 years (IQR 55.0–81.0), 57.5% men). 78.2% had at least one underlying comorbidity, the most frequent was hypertension (55.8%). Most frequent symptoms at presentation were fever (75.3%), cough (65.7%) and dyspnoea (58.1%). 81 (5.8%) patients were admitted to the intensive care unit (ICU) (median age 62 years (IQR 51–71); 74.1% men; median length of stay 9 days (IQR 5–19)) 82.7% of them needed invasive ventilation support. 1393 patients had an outcome at the end of the study period (case fatality ratio: 21.2% (296/1393)). The independent factors associated with fatality (OR; 95% CI): age (1.07; 1.06 to 1.09), male sex (2.86; 1.85 to 4.50), neurological disease (1.93; 1.19 to 3.13), chronic kidney disease (2.83; 1.40 to 5.71) and neoplasia (4.29; 2.40 to 7.67). The percentage of hospital beds occupied with COVID-19 almost doubled (702/361), with the number of patients in ICU quadrupling its capacity (32/8). Median length of stay was 9 days (IQR 6–14).Conclusions This study provides clinical characteristics, complications and outcomes of patients with COVID-19 admitted to a European secondary hospital. Fatal outcomes were similar to those reported by hospitals with a higher level of complexity
Development of a prediction model for postoperative pneumonia A multicentre prospective observational study
BACKGROUND Postoperative pneumonia is associated with increased morbidity, mortality and costs. Prediction models of pneumonia that are currently available are based on retrospectively collected data and administrative coding systems. OBJECTIVE To identify independent variables associated with the occurrence of postoperative pneumonia. DESIGN A prospective observational study of a multicentre cohort (Prospective Evaluation of a RIsk Score for postoperative pulmonary COmPlications in Europe database). SETTING Sixty-three hospitals in Europe. PATIENTS Patients undergoing surgery under general and/or regional anaesthesia during a 7-day recruitment period. MAIN OUTCOME MEASURE The primary outcome was postoperative pneumonia. Definition: the need for treatment with antibiotics for a respiratory infection and at least one of the following criteria: new or changed sputum; new or changed lung opacities on a clinically indicated chest radiograph; temperature more than 38.3 degrees C; leucocyte count more than 12 000 mu l(-1). RESULTS Postoperative pneumonia occurred in 120 out of 5094 patients (2.4%). Eighty-two of the 120 (68.3%) patients with pneumonia required ICU admission, compared with 399 of the 4974 (8.0%) without pneumonia (P < 0.001). We identified five variables independently associated with postoperative pneumonia: functional status [odds ratio (OR) 2.28, 95% confidence interval (CI) 1.58 to 3.12], pre-operative SpO(2) values while breathing room air (OR 0.83, 95% CI 0.78 to 0.84), intra-operative colloid administration (OR 2.97, 95% CI 1.94 to 3.99), intra-operative blood transfusion (OR 2.19, 95% CI 1.41 to 4.71) and surgical site (open upper abdominal surgery OR 3.98, 95% CI 2.19 to 7.59). The model had good discrimination (c-statistic 0.89) and calibration (Hosmer-Lemeshow P = 0.572). CONCLUSION We identified five variables independently associated with postoperative pneumonia. The model performed well and after external validation may be used for risk stratification and management of patients at risk of postoperative pneumonia