38,570 research outputs found

    Pionic effects in deep inelastic scattering off nuclei

    Get PDF
    The structure functions calculated in the Chiral bag model reproduce quite well, after appropriate perturbative evolution to large energy scales, the experimental data. We use these results to interpret the structure of the EMCEMC data as a quenching of the pion decay constant due to the in medium behavior of the nucleon. This explanation supports recent proposals of this phenomenon whose origin is the scale invariance of the QCDQCD lagrangian.Comment: 7 pages, figures not included, ftuv92-2

    Frequency and damping evolution during experimental seismic response of civil engineering structures

    Get PDF
    The results of the seismic tests on several reinforced-concrete shear walls and a four-storey frame are analysed in this paper. Each specimen was submitted to the action of a horizontal accelerogram, with successive growing amplitudes, using the pseudodynamic method. An analysis of the results allows knowing the evolution of the eigen frequency and damping ratio during the earthquakes thanks to an identification method working in the time domain. The method is formulated as a spatial model in which the stiffness and damping matrices are directly identified from the experimental displacements, velocities and restoring forces. The obtained matrices are then combined with the theoretical mass in order to obtain the eigen frequencies, damping ratios and modes. Those parameters have a great relevance for the design of this type of structures

    Experimental ratchet effect in superconducting films with periodic arrays of asymmetric potentials

    Get PDF
    A vortex lattice ratchet effect has been investigated in Nb films grown on arrays of nanometric Ni triangles, which induce periodic asymmetric pinning potentials. The vortex lattice motion yields a net dc-voltage when an ac driving current is applied to the sample and the vortex lattice moves through the field of asymmetric potentials. This ratchet effect is studied taking into account the array geometry, the temperature, the number of vortices per unit cell of the array and the applied ac currents.Comment: 15 pages, figures include

    How to reduce the suspension thermal noise in LIGO without improving the Q's of the pendulum and violin modes

    Full text link
    The suspension noise in interferometric gravitational wave detectors is caused by losses at the top and the bottom attachments of each suspension fiber. We use the Fluctuation-Dissipation theorem to argue that by careful positioning of the laser beam spot on the mirror face it is possible to reduce the contribution of the bottom attachment point to the suspension noise by several orders of magnitude. For example, for the initial and enhanced LIGO design parameters (i.e. mirror masses and sizes, and suspension fibers' lengths and diameters) we predict a reduction of 100\sim 100 in the "bottom" spectral density throughout the band 35100Hz35-100\hbox{Hz} of serious thermal noise. We then propose a readout scheme which suppresses the suspension noise contribution of the top attachment point. The idea is to monitor an averaged horizontal displacement of the fiber of length l l; this allows one to record the contribution of the top attachment point to the suspension noise, and later subtract it it from the interferometer readout. For enhanced LIGO this would allow a suppression factor about 100 in spectral density of suspension thermal noise.Comment: a few misprints corrected; submitted to Classical and Quantum Gravit

    Magnetar-like Emission from the Young Pulsar in Kes 75

    Full text link
    We report detection of magnetar-like X-ray bursts from the young pulsar PSR J1846-0258, at the center of the supernova remnant Kes 75. This pulsar, long thought to be rotation-powered, has an inferred surface dipolar magnetic field of 4.9x10^13 G, higher than those of the vast majority of rotation-powered pulsars, but lower than those of the ~12 previously identified magnetars. The bursts were accompanied by a sudden flux increase and an unprecedented change in timing behavior. These phenomena lower the magnetic and rotational thresholds associated with magnetar-like behavior, and suggest that in neutron stars there exists a continuum of magnetic activity that increases with inferred magnetic field strength.Comment: 17 pages, 2 figures, accepted for publication in Science. Note: The content of this paper is embargoed until February 21, 200

    A continuous Mott transition between a metal and a quantum spin liquid

    Get PDF
    More than half a century after first being proposed by Sir Nevill Mott, the deceptively simple question of whether the interaction-driven electronic metal-insulator transition may be continuous remains enigmatic. Recent experiments on two-dimensional materials suggest that when the insulator is a quantum spin liquid, lack of magnetic long-range order on the insulating side may cause the transition to be continuous, or only very weakly first order. Motivated by this, we study a half-filled extended Hubbard model on a triangular lattice strip geometry. We argue, through use of large-scale numerical simulations and analytical bosonization, that this model harbors a continuous (Kosterlitz-Thouless-like) quantum phase transition between a metal and a gapless spin liquid characterized by a spinon Fermi surface, i.e., a "spinon metal." These results may provide a rare insight into the development of Mott criticality in strongly interacting two-dimensional materials and represent one of the first numerical demonstrations of a Mott insulating quantum spin liquid phase in a genuinely electronic microscopic model.Comment: 18 pages, 9 figure
    corecore