171 research outputs found

    Electron bifurcation mechanism and homoacetogenesis explain products yields in mixed culture anaerobic fermentations

    Get PDF
    Anaerobic fermentation of organic wastes using microbial mixed cultures is a promising avenue to treat residues and obtain added-value products. However, the process has some important limitations that prevented so far any industrial application. One of the main issues is that we are not able to predict reliably the product spectrum (i.e. the stoichiometry of the process) because the complex microbial community behaviour is not completely understood. To address this issue, in this work we propose a new metabolic network of glucose fermentation by microbial mixed cultures that incorporates electron bifurcation and homoacetogenesis. Our methodology uses NADH balances to analyse published experimental data and evaluate the new stoichiometry proposed. Our results prove for the first time the inclusion of electron bifurcation in the metabolic network as a better description of the experimental results. Homoacetogenesis has been used to explain the discrepancies between observed and theoretically predicted yields of gaseous H2 and CO2 and it appears as the best solution among other options studied. Overall, this work supports the consideration of electron bifurcation as an important biochemical mechanism in microbial mixed cultures fermentations and underlines the importance of considering homoacetogenesis when analysing anaerobic fermentations

    Heterogeneity in pure microbial systems: experimental measurements and modeling

    Get PDF
    Cellular heterogeneity influences bioprocess performance in ways that until date are not completely elucidated. In order to account for this phenomenon in the design and operation of bioprocesses, reliable analytical and mathematical descriptions are required. We present an overview of the single cell analysis, and the mathematical modeling frameworks that have potential to be used in bioprocess control and optimization, in particular for microbial processes. In order to be suitable for bioprocess monitoring, experimental methods need to be high throughput and to require relatively short processing time. One such method used successfully under dynamic conditions is flow cytometry. Population balance and individual based models are suitable modeling options, the latter one having in particular a good potential to integrate the various data collected through experimentation. This will be highly beneficial for appropriate process design and scale up as a more rigorous approach may prevent a priori unwanted performance losses. It will also help progressing synthetic biology applications to industrial scale

    Bioenergetics-based modelling of microbial ecosystems for biotechnological applications

    Get PDF
    The bioenergetics analysis and mathematical modelling of several bioprocesses with industrial interest aiming for waste materials recovery, is conducted in this Thesis. The objective is to mechanistically understand the physical limits of the processes together with the ecological interactions established in their different microbial ecosystems. This new knowledge could lead towards an improvement of the bioprocesses control increasing their efficiency. Three mathematical models have been developed based on bioenergetics and minimizing the empirical information necessary. Firstly, a novel metabolic energy-based model has been developed that accurately predicts the experimentally observed changes in product spectrum with pH variations when glucose is fermented in acidogenic conditions. The results are mechanistically explained analysing, under different environmental conditions, the impact that variable proton motive potential and active transport energy costs have in terms of energy harvest over products yielding. Secondly, several bioenergetics analyses to investigate the potential reversibility of specific anaerobic pathways of interest (more reduced products yielding with higher energy density) have been developed. Thermodynamics of the different steps in biochemical pathways are analysed and combined with assumptions concerning kinetic and physiological constraints to evaluate if the pathways are potentially reversible by imposing changes in process conditions. And thirdly, a last model is presented based on the assumption that mixed cultures are composed by undefined species competing for the energetic resources available and limited by the fundamental trade-off between yield and rate of energy harvest per unit of substrate. In this model, the competition between existing and non-experimentally reported microbial catabolic activities, is simulated. Successful ecological relations of competition or collaboration are predicted under the hypothesis of maximum energy harvest rate and in line with experimental observations

    Bioenergetics analysis of ammonia-oxidizing bacteria and the estimation of their maximum growth yield

    Get PDF
    The currently accepted biochemistry and bioenergetics of ammonia-oxidizing bacteria (AOB) show an inefficient metabolism: only 53.8% of the energy released when a mole of ammonia is oxidised and less than two of the electrons liberated can be directed to the autotrophic anabolism. However, paradoxically, AOB seem to thrive in challenging conditions: growing readily in virtually most aerobic environment, yet limited AOB exist in pure culture. In this study, a comprehensive model of the biochemistry of the metabolism of AOB is presented. Using bioenergetics calculations and selecting the minimum estimation for the energy dissipated in each of the metabolic steps, the model predicts the highest possible true yield of 0.16 gBio/gN and a yield of 0.13 gBio/gN when cellular maintenance is considered. Observed yields should always be lower than these values but the range of experimental values in literature vary between 0.04 and 0.45 gBio/gN. In this work, we discuss if this variance of observed values for AOB growth yield could be understood if other non-considered alternative energy sources are present in the biochemistry of AOB. We analyse how the predicted maximum growth yield of AOB changes considering co-metabolism, the use of hydroxylamine as a substrate, the abiotic oxidation of NO, energy harvesting in the monooxygenase enzyme or the use of organic carbon sources

    Assessment, Design and Implementation of a Private Cloud for MapReduce Applications

    Get PDF
    [Abstract] Scientific computation and data intensive analyses are ever more frequent. On the one hand, the MapReduce programming model has gained a lot of attention for its applicability in large parallel data analyses and Big Data applications. On the other hand, Cloud computing seems to be increasingly attractive in solving these computing problems that demand a lot of resources. This paper explores the potential symbiosis between MapReduce and Cloud Computing, in order to create a robust and scalable environment to execute MapReduce workflows regardless of the underlaying infrastructure. The main goal of this work is to provide an easy-to-install interface, so as non-expert scientists can deploy a suitable testbed for their MapReduce experiments on local resources of their institution. Testing cases were performed in order to evaluate the required time for the whole executing process on a real cluster

    Removable, reconfigurable, and sustainable steel structures: a state-of-the-art review of clamp-based steel connections

    Get PDF
    In this review paper, first of all, an analysis of the circular economy and its application to steel structures is carried out. It highlights the need to apply the philosophy of Design for Deconstruction or Design for Disassembly (DfD) from the conception of the structure so that it can be truly reconfigurable. Then, a brief review of the different types of connections for steel structures is conducted, comparing the level of research and development of each of them and the degree of reconfiguration that is possible to obtain. Subsequently, the article focuses on the type of connection using clamps, a key point of this work and on which, to date, there are no state-of-the-art studies. It describes the types of clamps, their principle of operation, the types of connections developed with them, and the results of the different investigations that allow for calculating these types of connections. A summary is also given of how these connection types work according to the geometrical characteristics of the clamp and the bolt so that this review work can serve as a driver for the widespread use of clamp-based connections by researchers and engineers in the design and manufacturing of demountable and reconfigurable steel structures. Finally, some conclusions are given, indicating the advantages and disadvantages of this connection system and future lines of research.Ministerio de Ciencia e Información | Ref. TED2021-130497A-I0

    A novel fully removable walkway system with non-invasive anchors for structural health inspection and maintenance of historic steel structures

    Get PDF
    Historic steel structures are generally heritage constructions that must be preserved, where invasive operations such as welding or drilling cannot be performed. Any auxiliary structures installed on these constructions must be easily removable. In addition, historic steel structures such as riveted bridges are difficult to access, making it very difficult to take measurements using contact techniques or to perform structural health inspections. One of the most common needs is the installation of walkways for inspection and especially for maintenance and repair purposes. In this sense, clamp-based connections are a technique for fabricating dismountable systems that allow anchoring to existing structures without performing invasive operations such as welding or drilling. This study proposes, develops, simulates, and tests a novel non-invasive detachable anchorage system for the assembly of temporary walkways for inspecting and maintaining historic steel structures without additional scaffolding. In addition, a methodology is proposed for the easy and correct installation of the proposed system by combining it with LiDAR techniques. The developed system has been assembled and tested in laboratory tests and two real case studies.Agencia Estatal de Investigación | Ref. TED2021-130497A-I00Universidade de Vigo/CISU

    Assessment, Design and Implementation of a Private Cloud for MapReduce Applications

    Get PDF
    Scientific computation and data intensive analyses are ever more frequent. On the one hand, the MapReduce programming model has gained a lot of attention for its applicability in large parallel data analyses and Big Data applications. On the other hand, Cloud computing seems to be increasingly attractive in solving these computing problems that demand a lot of resources. This paper explores the potential symbiosis between MapReduce and Cloud Computing, in order to create a robust and scalable environment to execute MapReduce workflows regardless of the underlaying infrastructure. The main goal of this work is to provide an easy-to-install interface, so as non-expert scientists can deploy a suitable testbed for their MapReduce experiments on local resources of their institution. Testing cases were performed in order to evaluate the required time for the whole executing process on a real clusterS

    Extracting extremophilic lipases from aqueous streams by using biocompatible ionic liquids

    Get PDF
    Financiado para publicación en acceso aberto:Universidade de Vigo/CISUGIn this work, biocompatible ionic liquids based on aminoacids were employed as extractants to separate extremolipases from aqueous streams. First, the influence of aminoacid and dipeptide-based ionic liquids (cholinium glycinate, ChGly, and cholinium glycylglycinate, ChGlygly) on the lipolytic activity of a commercial lipase from Candida antarctica (CaLB) and in-house synthesized extremophilic lipases from Thermus thermophilus HB27 (TtHB27L) and Halomonas sp. LM1C (HL) was investigated. The combination of thermophilic enzyme with ChGly turned out to be the optimum combination for maximizing the biocatalytic performance, clearly improving the levels attained when water was exclusively employed as solvent and also surpassing the activity levels provided for the commercial enzyme CaLB. The salting out capacity of ChGly in aqueous solutions of biodegradable surfactants Tergitol 15S7 and Tergitol 15S9 was discussed, recording immiscibility areas almost covering all the ternary diagrams. The aqueous biphasic systems were experimentally characterized by determining both tie-lines and solubility curves at several temperatures and the data was modelled with relevant equations like Merchuk, Othmer-Tobias and Bancroft ones, as they are the most common ones to describe this kind of equilibrium data. So, ChGly was applied to extract thermophilic and commercial lipases from aqueous solutions at 313.15 K, achieving very high extraction levels (about 100 %) for TtHB27L, which clearly surpasses the maximum extraction values observed for the commercial enzyme (about 80 %). Finally, the process was simulated at real scale through SuperPro Designer v.8.5 for the production of 385 Kg/year of extremolipaseXunta de Galicia | Ref. ED481D-2019/017Ministerio de Ciencia, Innovación y Universidades | Ref. RTI2018-094702-B-I0

    Creating a new biocatalytic complex with extremolipases and biocompatible ionic liquids for improved transesterification reactions

    Get PDF
    The ongoing energy crisis has spurred increased research into sustainable and more competitive methods for producing biofuels, including biodiesel. In this context, the focus of the current study is to underscore the viability of investing in a novel biocatalytic complex. This complex incorporates extremophilic lipases and biocompatible ionic liquids with the aim of achieving exceptionally high conversions in transesterification reactions without generating glycerol. Through a meticulous screening process encompassing various amino acid and dipeptide-based ionic liquids from the ammonium family, cholinium glycinate turned out to be the optimal choice. This selection was driven not only by its enhanced compatibility with a commercially available Candida antarctica lipase B (CaLB) but also with extremophilic enzymes synthesized in-house, derived from halophilic (Halomonas spLM1C) and thermophilic (Thermus thermophilus HB27) strains. Following rigorous testing of both free and immobilized enzymes, the ideal concentration of the ionic liquid in transesterification reactions was determined to be 1% relative to the sunflower oil content. Comparative analysis of conversion rates between immobilized thermophilic lipase and immobilized CaLB revealed the efficacy of the proposed approach. Maximum conversions were found to increase by 20%, with specific conversion rates soaring by approximately 180% when utilizing the immobilized thermophilic lipase. In conclusion, this research ushers in new prospects for advancing the competitiveness of biocatalytic solutions in glycerol-free transesterification reactions, underscoring its potential to revolutionize the landscape of sustainable energy production.Agencia Estatal de Investigación | Ref. RTI2018-094702-B-I00Xunta de Galicia | Ref. ED481D-2019/017Universidade de Vigo/CISU
    corecore