321 research outputs found

    Introduction

    Get PDF
    At Seattle University School of Law’s Symposium on Racial Bias and the Criminal Justice System, students, faculty, judges, scholars, lawyers, and community members gathered to address racial disparity in the criminal justice system and to explore ways to keep the promise of our democracy that we all are equal before the law. Race, ethnicity, skin color, and national origin profoundly influence our legal structure and our liberty. The way that race influences perceptions and actions is critically important in the context of our criminal justice system—a system that changes lives, disrupts and protects communities, and represents a key part of our struggle for justice

    Counterrotating Dust Disk Around a Schwarzschild Black Hole: New Fully Integrated Explicit Exact Solution

    Get PDF
      The first fully integrated explicit exact solution of Einstein's field equations corresponding to the superposition of a counterrotating dust disk with a central black hole is presented. The obtained solution represents an infinite annular thin disk (a disk with an inner edge) around the Schwarsz-child black hole, and the corresponding to energy-momentum tensor agrees with all the energy conditions. The solution can also be interpreted as des-cribing a thin disk made of two counterrotating dust fluids that are also in agreement with all the energy conditions.   &nbsp

    Suppression of electron-electron repulsion and superconductivity in Ultra Small Carbon Nanotubes

    Full text link
    Recently, ultra-small-diameter Single Wall Nano Tubes with diameter of ∌0.4nm \sim 0.4 nm have been produced and many unusual properties were observed, such as superconductivity, leading to a transition temperature Tc∌15oKT_c\sim 15^oK, much larger than that observed in the bundles of larger diameter tubes. By a comparison between two different approaches, we discuss the issue whether a superconducting behavior in these carbon nanotubes can arise by a purely electronic mechanism. The first approach is based on the Luttinger Model while the second one, which emphasizes the role of the lattice and short range interaction, is developed starting from the Hubbard Hamiltonian. By using the latter model we predict a transition temperature of the same order of magnitude as the measured one.Comment: 7 pages, 3 figures, to appear in J. Phys.-Cond. Ma

    Aislamiento del enterococo por los medios glucosados

    Get PDF

    Dust-Bounded ULIRGs? Model Predictions for Infrared Spectroscopic Surveys

    Full text link
    The observed faintness of infrared fine-structure line emission along with the warm far-infrared (FIR) colors of ultraluminous infrared galaxies (ULIRGs) is a long-standing problem. In this work, we calculate the line and continuum properties of a cloud exposed to an Active Galactic Nucleus (AGN) and starburst spectral energy distribution (SED). We use an integrated modeling approach, predicting the spectrum of ionized, atomic, and molecular environments in pressure equilibrium. We find that the effects of high ratios of impinging ionizing radiation density to particle density (i.e. high ionization parameters, or U) can reproduce many ULIRG observational characteristics. Physically, as U increases, the fraction of UV photons absorbed by dust increases, corresponding to fewer photons available to photoionize and heat the gas, producing what is known as a "dust-bounded" nebula. We show that high U effects can explain the "[C II] deficit", the ~1 dex drop in the [C II] 158 micron /FIR ratio seen in ULIRGs when compared to starburst or normal galaxies. Additionally, by increasing U through increasing the ionizing photon flux, warmer dust and thus higher IRAS F(60)/F(100) ratios result. High U effects also predict an increase in [O I]63 micron /[C II] 158 micron and a gradual decline in [O III] 88 micron /FIR, similar to the magnitude of the trends observed, and yield a reasonable fit to [Ne V]14 micron /FIR ratio AGN observations.Comment: 34 pages, 13 figures, accepted for publication in the Astrophysical Journa

    The detached dust shells of AQ And, U Ant, and TT Cyg

    Full text link
    Detached circumstellar dust shells are detected around three carbon variables using Herschel-PACS. Two of them are already known on the basis of their thermal CO emission and two are visible as extensions in IRAS imaging data. By model fits to the new data sets, physical sizes, expansion timescales, dust temperatures, and more are deduced. A comparison with existing molecular CO material shows a high degree of correlation for TT Cyg and U Ant but a few distinct differences with other observables are also found.Comment: Letter accepted for publication on the A&A Herschel Special Issu

    Enhancing real-time human detection based on histograms of oriented gradients

    Get PDF
    In this paper we propose a human detection framework based on an enhanced version of Histogram of Oriented Gradients (HOG) features. These feature descriptors are computed with the help of a precalculated histogram of square-blocks. This novel method outperforms the integral of oriented histograms allowing the calculation of a single feature four times faster. Using Adaboost for HOG feature selection and Support Vector Machine as weak classifier, we build up a real-time human classifier with an excellent detection rate.Peer Reviewe

    Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is determined by 5' splice site strength.

    Get PDF
    BACKGROUND: Sequential assembly of the human spliceosome on RNA transcripts regulates splicing across the human transcriptome. The core spliceosome component PRPF8 is essential for spliceosome assembly through its participation in ribonucleoprotein (RNP) complexes for splice-site recognition, branch-point formation and catalysis. PRPF8 deficiency is linked to human diseases like retinitis pigmentosa or myeloid neoplasia, but its genome-wide effects on constitutive and alternative splicing remain unclear. RESULTS: Here, we show that alterations in RNA splicing patterns across the human transcriptome that occur in conditions of restricted cellular PRPF8 abundance are defined by the altered splicing of introns with weak 5' splice sites. iCLIP of spliceosome components reveals that PRPF8 depletion decreases RNP complex formation at most splice sites in exon-intron junctions throughout the genome. However, impaired splicing affects only a subset of human transcripts, enriched for mitotic cell cycle factors, leading to mitotic arrest. Preferentially retained introns and differentially used exons in the affected genes contain weak 5' splice sites, but are otherwise indistinguishable from adjacent spliced introns. Experimental enhancement of splice-site strength in mini-gene constructs overcomes the effects of PRPF8 depletion on the kinetics and fidelity of splicing during transcription. CONCLUSIONS: Competition for PRPF8 availability alters the transcription-coupled splicing of RNAs in which weak 5' splice sites predominate, enabling diversification of human gene expression during biological processes like mitosis. Our findings exemplify the regulatory potential of changes in the core spliceosome machinery, which may be relevant to slow-onset human genetic diseases linked to PRPF8 deficiency
    • 

    corecore