791 research outputs found

    The role of psychometrics in individual differences research in cognition: A case study of the AX-CPT

    Get PDF
    Investigating individual differences in cognition requires addressing questions not often thought about in standard experimental designs, especially regarding the psychometric properties of the task. Using the AX-CPT cognitive control task as a case study example, we address four concerns that one may encounter when researching the topic of individual differences in cognition. First, we demonstrate the importance of variability in task scores, which in turn directly impacts reliability, particularly when comparing correlations in different populations. Second, we demonstrate the importance of variability and reliability for evaluating potential failures to replicate predicted correlations, even within the same population. Third, we demonstrate how researchers can turn to evaluating psychometric properties as a way of evaluating the feasibility of utilizing the task in new settings (e.g., online administration). Lastly, we show how the examination of psychometric properties can help researchers make informed decisions when designing a study, such as determining the appropriate number of trials for a task

    Young and middle age pulsar light-curve morphology: Comparison of Fermi observations with gamma-ray and radio emission geometries

    Full text link
    Thanks to the huge amount of gamma-ray pulsar photons collected by the Fermi Large Area Telescope since June 2008, it is now possible to constrain gamma-ray geometrical models by comparing simulated and observed light-curve morphological characteristics. We assumed vacuum-retarded dipole pulsar magnetic field and tested simulated and observed morphological light-curve characteristics in the framework of two pole emission geometries, Polar Cap (PC), radio, and Slot Gap (SG), and Outer Gap (OG)/One Pole Caustic (OPC) emission geometries. We compared simulated and observed/estimated light-curve morphological parameters as a function of observable and non-observable pulsar parameters. The PC model gives the poorest description of the LAT pulsar light-curve morphology. The OPC best explains both the observed gamma-ray peak multiplicity and shape classes. The OPC and SG models describe the observed gamma-ray peak-separation distribution for low- and high-peak separations, respectively. This suggests that the OPC geometry best explains the single-peak structure but does not manage to describe the widely separated peaks predicted in the framework of the SG model as the emission from the two magnetic hemispheres. The OPC radio-lag distribution shows higher agreement with observations suggesting that assuming polar radio emission, the gamma-ray emission regions are likely to be located in the outer magnetosphere. The larger agreement between simulated and LAT estimations in the framework of the OPC suggests that the OPC model best predicts the observed variety of profile shapes. The larger agreement between observations and the OPC model jointly with the need to explain the abundant 0.5 separated peaks with two-pole emission geometries, calls for thin OPC gaps to explain the single-peak geometry but highlights the need of two-pole caustic emission geometry to explain widely separated peaks.Comment: 28 pages, 20 figures, 8 tables; accepted for publication in Astronomy and Astrophysic

    Hard X-ray Quiescent Emission in Magnetars via Resonant Compton Upscattering

    Full text link
    Non-thermal quiescent X-ray emission extending between 10 keV and around 150 keV has been seen in about 10 magnetars by RXTE, INTEGRAL, Suzaku, NuSTAR and Fermi-GBM. For inner magnetospheric models of such hard X-ray signals, inverse Compton scattering is anticipated to be the most efficient process for generating the continuum radiation, because the scattering cross section is resonant at the cyclotron frequency. We present hard X-ray upscattering spectra for uncooled monoenergetic relativistic electrons injected in inner regions of pulsar magnetospheres. These model spectra are integrated over bundles of closed field lines and obtained for different observing perspectives. The spectral turnover energies are critically dependent on the observer viewing angles and electron Lorentz factor. We find that electrons with energies less than around 15 MeV will emit most of their radiation below 250 keV, consistent with the turnovers inferred in magnetar hard X-ray tails. Electrons of higher energy still emit most of the radiation below around 1 MeV, except for quasi-equatorial emission locales for select pulse phases. Our spectral computations use a new state-of-the-art, spin-dependent formalism for the QED Compton scattering cross section in strong magnetic fields.Comment: 5 pages, 2 figures, to appear in Proc. "Physics of Neutron Stars - 2017," Journal of Physics: Conference Series, eds. G. G. Pavlov, et al., held in Saint Petersburg, Russia, 10-14 July, 201

    Forest Pathology and Plant Health

    Get PDF
    Every year, a number of new forest pathosystems are discovered as the result of introduction of alien pathogens, host shifts and jumps, hybridization and recombination among pathogens, etc. Disease outbreaks may also be favored by climate change and forest management. The mechanisms driving the resurgence of native pathogens and the invasion of alien ones need to be better understood in order to draft sustainable control strategies. For this Special Issue, we welcome population biology studies providing insights on the epidemiology and invasiveness of emergent forest pathogens possibly by contrasting different scenarios varying in pathogen and host populations size, genetics, phenotype and phenology, landscape fragmentation, occurrence of disturbances, management practices, etc. Both experimental and monitoring approaches are welcome. In summary, this special issue focuses on how variability in hosts, pathogens, or ecology may affect the emergence of new threats to plant species

    Gradual Certified Programming in Coq

    Full text link
    Expressive static typing disciplines are a powerful way to achieve high-quality software. However, the adoption cost of such techniques should not be under-estimated. Just like gradual typing allows for a smooth transition from dynamically-typed to statically-typed programs, it seems desirable to support a gradual path to certified programming. We explore gradual certified programming in Coq, providing the possibility to postpone the proofs of selected properties, and to check "at runtime" whether the properties actually hold. Casts can be integrated with the implicit coercion mechanism of Coq to support implicit cast insertion a la gradual typing. Additionally, when extracting Coq functions to mainstream languages, our encoding of casts supports lifting assumed properties into runtime checks. Much to our surprise, it is not necessary to extend Coq in any way to support gradual certified programming. A simple mix of type classes and axioms makes it possible to bring gradual certified programming to Coq in a straightforward manner.Comment: DLS'15 final version, Proceedings of the ACM Dynamic Languages Symposium (DLS 2015

    Compton Scattering in Ultra-Strong Magnetic Fields: Numerical and Analytical Behavior in the Relativistic Regime

    Get PDF
    This paper explores the effects of strong magnetic fields on the Compton scattering of relativistic electrons. Recent studies of upscattering and energy loss by relativistic electrons that have used the non-relativistic, magnetic Thomson cross section for resonant scattering or the Klein-Nishina cross section for non-resonant scattering do not account for the relativistic quantum effects of strong fields (>4×1012 > 4 \times 10^{12} G). We have derived a simplified expression for the exact QED scattering cross section for the broadly-applicable case where relativistic electrons move along the magnetic field. To facilitate applications to astrophysical models, we have also developed compact approximate expressions for both the differential and total polarization-dependent cross sections, with the latter representing well the exact total QED cross section even at the high fields believed to be present in environments near the stellar surfaces of Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars. We find that strong magnetic fields significantly lower the Compton scattering cross section below and at the resonance, when the incident photon energy exceeds mec2m_ec^2 in the electron rest frame. The cross section is strongly dependent on the polarization of the final scattered photon. Below the cyclotron fundamental, mostly photons of perpendicular polarization are produced in scatterings, a situation that also arises above this resonance for sub-critical fields. However, an interesting discovery is that for super-critical fields, a preponderance of photons of parallel polarization results from scatterings above the cyclotron fundamental. This characteristic is both a relativistic and magnetic effect not present in the Thomson or Klein-Nishina limits.Comment: AASTeX format, 31 pages included 7 embedded figures, accepted for publication in The Astrophysical Journa

    Frustration driven structural distortion in VOMoO4

    Full text link
    Nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), magnetization measurements and electronic structure calculations in VOMoO4 are presented. It is found that VOMoO4 is a frustrated two-dimensional antiferromagnet on a square lattice with competing exchange interactions along the side J1 and the diagonal J2 of the square. From magnetization measurements J1+J2 is estimated around 155 K, in satisfactory agreement with the values derived from electronic structure calculations. Around 100 K a structural distortion, possibly driven by the frustration, is evidenced. This distortion induces significant modifications in the NMR and EPR spectra which can be accounted for by valence fluctuations. The analysis of the spectra suggests that the size of the domains where the lattice is distorted progressively grows as the temperature approaches the transition to the magnetic ground state at Tc=42 K
    • …
    corecore