845 research outputs found

    Finite-element reentry heat-transfer analysis of space shuttle Orbiter

    Get PDF
    A structural performance and resizing (SPAR) finite-element thermal analysis computer program was used in the heat-transfer analysis of the space shuttle orbiter subjected to reentry aerodynamic heating. Three wing cross sections and one midfuselage cross section were selected for the thermal analysis. The predicted thermal protection system temperatures were found to agree well with flight-measured temperatures. The calculated aluminum structural temperatures also agreed reasonably well with the flight data from reentry to touchdown. The effects of internal radiation and of internal convection were found to be significant. The SPAR finite-element solutions agreed reasonably well with those obtained from the conventional finite-difference method

    Thermal and structural tests of Rene 41 honeycomb integral-tank concept for future space transportation systems

    Get PDF
    Two flat 12 by 72 inch Rene 41 honeycomb sandwich panels were tested in a manner to produce combined thermal and mechanical longitudinal stresses that simulated those that would occur in a larger, more complex integral tank and fuselage structure of an earth to orbit vehicle. Elastic strains measured at temperatures below 400 F are compared with calculated values obtained from a linear elastic finite element analysis to verify the analytical model and to establish confidence in the calculated strains. Elastic strain measurement at higher temperatures (between 600 F and 1400 F), where strain measurement is more difficult and less certain, are also compared with calculated strains. Agreement between measured and calculated strains for the lower temperatures is good, but agreement for the higher temperatures is poor because of unreliable strain measurements. Test results indicate that an ascent and entry life cycle of 500 is attainable under high combined thermal and mechanical elastic strains

    Comparison of flight-measured and calculated temperatures on the space shuttle orbiter

    Get PDF
    Structural temperatures and thermal protection system surface temperatures were measured on the space shuttle during the flight of STS 5. The measured data are compared with values calculated at wing stations 134, 240, and 328 and at fuselage station 877. The theoretical temperatures were calculated using the structural performance and resizing finite element thermal analysis program. The comparisons show that the calculated temperatures are, generally, in good agreement with the measured data

    A Technique for Transient Thermal Testing of Thick Structures

    Get PDF
    A new open-loop heat flux control technique has been developed to conduct transient thermal testing of thick, thermally-conductive aerospace structures. This technique uses calibration of the radiant heater system power level as a function of heat flux, predicted aerodynamic heat flux, and the properties of an instrumented test article. An iterative process was used to generate open-loop heater power profiles prior to each transient thermal test. Differences between the measured and predicted surface temperatures were used to refine the heater power level command profiles through the iteration process. This iteration process has reduced the effects of environmental and test system design factors, which are normally compensated for by closed-loop temperature control, to acceptable levels. The final revised heater power profiles resulted in measured temperature time histories which deviated less than 25 F from the predicted surface temperatures

    Reentry Thermal Analysis of a Generic Crew Exploration Vehicle Structure

    Get PDF
    Comparative studies were performed on the heat-shielding characteristics of honeycomb-core sandwich panels fabricated with different materials for possible use as wall panels for the proposed crew exploration vehicle. Graphite/epoxy sandwich panel was found to outperform aluminum sandwich panel under the same geometry due to superior heat-shielding qualities and lower material density. Also, representative reentry heat-transfer analysis was performed on the windward wall structures of a generic crew exploration vehicle. The Apollo low Earth orbit reentry trajectory was used to calculate the reentry heating rates. The generic crew exploration vehicle has a graphite/epoxy composite honeycomb sandwich exterior wall and an aluminum honeycomb sandwich interior wall, and is protected with the Apollo thermal protection system ablative material. In the thermal analysis computer program used, the TPS ablation effect was not yet included; however, the results from the nonablation heat-transfer analyses were used to develop a "virtual ablation" method to estimate the ablation heat loads and the thermal protection system recession thicknesses. Depending on the severity of the heating-rate time history, the virtual ablation period was found to last for 87 to 107 seconds and the ablation heat load was estimated to be in the range of 86 to 88 percent of the total heat load for the ablation time period. The thermal protection system recession thickness was estimated to be in the range of 0.08 to 0.11 inches. For the crew exploration vehicle zero-tilt and 18-degree-tilt stagnation points, thermal protection system thicknesses of h = {0.717, 0.733} inches were found to be adequate to keep the substructural composite sandwich temperature below the limit of 300 F

    Effect of internal convection and internal radiation on the structural temperatures of Space Shuttle Orbiter

    Get PDF
    Structural performance and resizing of the finite-element thermal analysis computer program was used in the reentry heat transfer analysis of the space shuttle orbiter. One midfuselage cross section and one midspan wing segment were selected to study the effects of internal convection and internal radiation on the structural temperatures. The effect of internal convection was found to be more prominent than that of internal radiation in the orbiter thermal analysis. Without these two effects, the calculated structural temperatures at certain stations could be as much as 45 to 90 percent higher than the measured values. By considering internal convection as free convection, the correlation between the predicted and measured structural temperatures could be improved greatly

    Thermal-fluid analysis of the fill and drain operations of a cryrogenic fuel tank

    Get PDF
    The Generic Research Cryogenic Tank was designed to establish techniques for testing and analyzing the behavior of reusable fuel tank structures subjected to cryogenic fuels and aerodynamic heating. The Generic Research Cryogenic Tank tests will consist of filling a pressure vessel to a prescribed fill level, waiting for steady-state conditions, then draining the liquid while heating the external surface to simulate the thermal environment associated with hypersonic flight. Initial tests of the Generic Research Cryogenic Tank will use liquid nitrogen with future tests requiring liquid hydrogen. Two-dimensional finite-difference thermal-fluid models were developed for analyzing the behavior of the Generic Research Cryogenic Tank during fill and drain operations. The development and results of the two-dimensional fill and drain models, using liquid nitrogen, are provided, along with results and discussion on extrapolating the model results to the operation of the full-size Generic Research Cryogenic Tank. These numerical models provided a means to predict the behavior of the Generic Research Cryogenic Tank during testing and to define the requirements for the Generic Research Cryogenic Tank support systems such as vent, drain, pressurization, and instrumentation systems. In addition, the fill model provided insight into the unexpected role of circumferential conduction in cooling the Generic Research Cryogenic Tank pressure vessel during fill operations

    Self-Paced and Video-Based Learning: Parent Training and Language Skills in Japanese Children with ASD

    Get PDF
    While no exact information on the prevalence exists, it is assumed that the overall incidence of children with autism spectrum disorder (ASD) has risen every year in Japan. However, given the lack of resources and services for families of children with ASD in Japan, there is a dearth of practical guidance for the support for those families. This study examined the effects of an asynchronous training package (i.e., self-paced and video-based learning manual) to teach two Japanese mothers to implement incidental teaching. Effectiveness of the instruction was determined using a multiple-baseline design across mother–child dyads. Results indicated that the mother participants were able to implement the intervention with high fidelity over time. However, mixed effects of the mother-delivered intervention on target language behaviours were found across the child participants’ behaviours. This study adds an evidence to support that parents can be essential and efficient intervention agents for children with ASD

    Structure and function of the Rad9-binding region of the DNA-damage checkpoint adaptor TopBP1

    Get PDF
    TopBP1 is a scaffold protein that coordinates activation of the DNA-damage-checkpoint response by coupling binding of the 9-1-1 checkpoint clamp at sites of ssDNA, to activation of the ATR-ATRIP checkpoint kinase complex. We have now determined the crystal structure of the N-terminal region of human TopBP1, revealing an unexpected triple-BRCT domain structure. The arrangement of the BRCT domains differs significantly from previously described tandem BRCT domain structures, and presents two distinct sites for binding phosphopeptides in the second and third BRCT domains. We show that the site in the second but not third BRCT domain in the N-terminus of TopBP1, provides specific interaction with a phosphorylated motif at pSer387 in Rad9, which can be generated by CK2
    • …
    corecore